首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   18852篇
  免费   1586篇
  国内免费   143篇
  2023年   56篇
  2022年   87篇
  2021年   379篇
  2020年   306篇
  2019年   367篇
  2018年   539篇
  2017年   405篇
  2016年   705篇
  2015年   1099篇
  2014年   1249篇
  2013年   1317篇
  2012年   1727篇
  2011年   1591篇
  2010年   991篇
  2009年   836篇
  2008年   1191篇
  2007年   1036篇
  2006年   930篇
  2005年   861篇
  2004年   784篇
  2003年   611篇
  2002年   560篇
  2001年   422篇
  2000年   355篇
  1999年   265篇
  1998年   116篇
  1997年   91篇
  1996年   86篇
  1995年   91篇
  1994年   84篇
  1993年   64篇
  1992年   124篇
  1991年   100篇
  1990年   110篇
  1989年   90篇
  1988年   75篇
  1987年   77篇
  1986年   57篇
  1985年   66篇
  1984年   52篇
  1983年   48篇
  1982年   43篇
  1981年   46篇
  1979年   42篇
  1978年   37篇
  1977年   37篇
  1976年   38篇
  1974年   37篇
  1973年   33篇
  1971年   36篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
Myeloid-derived suppressor cells (MDSC) are immature myeloid cells with immunosuppressive function. Compared to the level in healthy controls (HC), no elevation of MDSC in chronic hepatitis C (cHEP-C) patients was found, and there was no difference in MDSC based on genotype or viral load (P > 0.25). Moreover, MDSC of cHEP-C patients inhibited CD8 T cell function as efficiently as MDSC of HC did. Since we detected neither quantitative nor qualitative differences in MDSC of cHEP-C patients relative to those of HC, we postulate that MDSC in peripheral blood are most likely not significant regarding immune dysfunction in cHEP-C.  相似文献   
2.
Upon tumour necrosis factor alpha (TNFα) stimulation, cells respond actively by way of cell survival, apoptosis or programmed necrosis. The receptor‐interacting proteins 1 (RIP1) and 3 (RIP3) are responsible for TNFα‐mediated programmed necrosis. To delineate the differential contributions of RIP3 and RIP1 to programmed necrosis, L929 cells were stimulated with TNFα, carbobenzoxy‐valyl‐alanyl‐aspartyl‐[O‐methyl]‐fluoromethylketone (zVAD) or zVAD along with TNFα following RNA interference against RIP1 and RIP3, respectively. RIP1 silencing did not protect cells from TNFα‐mediated cell death, while RIP3 down‐regulation made them refractory to TNFα. The heat shock protein 90 inhibitor geldanamycin (GA) down‐regulated both RIP1 and RIP3 expression, which rendered cells resistant to zVAD/TNFα‐mediated cell death but not to TNFα‐mediated cell death alone. Therefore, the protective effect of GA on zVAD/TNFα‐stimulated necrosis might be attributed to RIP3, not RIP1, down‐regulation. Pretreatment of L929 cells with rapamycin mitigated zVAD‐mediated cell death, while the autophagy inhibitor chloroquine did not affect necrotic cell death. Meanwhile, necrotic cell death by zVAD and TNFα was caused by reactive oxygen species generation and effectively diminished by lipid‐soluble butylated hydroxyanisole. Taken together, the results indicate that RIP1 and RIP3 can independently mediate death signals being transduced by two different death stimuli, zVAD and TNFα. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
3.
4.
We consider adaptive robust methods for lung cancer that are also dose-reactive, wherein the treatment is modified after each treatment session to account for the dose delivered in prior treatment sessions. Such methods are of interest because they potentially allow for errors in the delivered dose to be corrected as the treatment progresses, thereby ensuring that the tumor receives a sufficient dose at the end of the treatment. We show through a computational study with real lung cancer patient data that while dose reaction is beneficial with respect to the final dose distribution, it may lead to exaggerated daily underdose and overdose relative to non-reactive methods that grows as the treatment progresses. However, by combining dose reaction with a mechanism for updating an estimate of the uncertainty, the magnitude of this growth can be mitigated substantially. The key finding of this paper is that reacting to dose errors – an adaptation strategy that is both simple and intuitively appealing – may backfire and lead to treatments that are clinically unacceptable.  相似文献   
5.
MicroRNAs (miRNAs) encoded by the myosin heavy chain (MHC) genes are muscle‐specific miRNAs (myomiRs) and regulate the expression of MHC isoforms in skeletal muscle. These miRNAs have been implicated in muscle fibre types and their characteristics by affecting the heterogeneity of myosin. In pigs, miR‐208b and miR‐499 are embedded in introns of MYH7 and MYH7b respectively. Here, we identified a novel single nucleotide polymorphism (SNP) in intron 30 of MYH7 by which porcine miR‐208b is encoded. Based on the association study using a total of 487 pigs including Berkshire (= 164), Landrace (= 121) and Yorkshire (= 202), the miR‐208b SNP (g.17104G>A) had significant effects on the proportions of types I and IIb fibre numbers (< 0.010) among muscle fibre characteristics and on drip loss (= 0.012) in meat quality traits. Moreover, the SNP affected the processing of primary miR‐208b into precursor miR‐208b with a marginal trend towards significance (= 0.053), thereby leading to significant changes in the levels of mature miR‐208b (= 0.009). These SNP‐dependent changes in mature miR‐208b levels were negatively correlated with the expression levels of its target gene, SOX‐6 (= 0.038), and positively associated with the expression levels of its host gene, MYH7 (= 0.046). Taken together, our data suggest that the porcine miR‐208b SNP differentially represses the expression of SOX‐6 by regulating miRNA biogenesis, thereby affecting the expression of MYH7 and the traits of muscle fibre characteristics and meat quality.  相似文献   
6.
We aimed to identify and characterize subtypes of Alzheimer’s disease (AD) exhibiting different patterns of regional brain atrophy on MRI using age- and gender-specific norms of regional brain volumes. AD subjects included in the Alzheimer''s Disease Neuroimaging Initiative study were classified into subtypes based on standardized values (Z-scores) of hippocampal and regional cortical volumes on MRI with reference to age- and gender-specific norms obtained from 222 cognitively normal (CN) subjects. Baseline and longitudinal changes of clinical characteristics over 2 years were compared across subtypes. Whole-brain-level gray matter (GM) atrophy pattern using voxel-based morphometry (VBM) and cerebrospinal fluid (CSF) biomarkers of the subtypes were also investigated. Of 163 AD subjects, 58.9% were classified as the “both impaired” subtype with the typical hippocampal and cortical atrophy pattern, whereas 41.1% were classified as the subtypes with atypical atrophy patterns: “hippocampal atrophy only” (19.0%), “cortical atrophy only” (11.7%), and “both spared” (10.4%). Voxel-based morphometric analysis demonstrated whole-brain-level differences in overall GM atrophy across the subtypes. These subtypes showed different progression rates over 2 years; and all subtypes had significantly lower CSF amyloid-β1–42 levels compared to CN. In conclusion, we identified four AD subtypes exhibiting heterogeneous atrophy patterns on MRI with different progression rates after controlling the effects of aging and gender on atrophy with normative information. CSF biomarker analysis suggests the presence of Aβ neuropathology irrespective of subtypes. Such heterogeneity of MRI-based neuronal injury biomarker and related heterogeneous progression patterns should be considered in clinical trials and practice with AD patients.  相似文献   
7.
Changes in respiratory mechanical loads are readily detected by humans. Although it is widely believed that respiratory muscle afferents serve as the primary source of information for load detection, there is, in fact, no convincing evidence to support this belief. We developed a shell that encloses the body, excluding the head and neck. A special loading apparatus altered pressure in proportion to respired volume (elastic load) in one of three ways: 1) at the mouth only (T), producing a conventional load in which respiratory muscles are loaded and airway and intrathoracic pressures are made negative in proportion to volume, 2) both at the mouth and in the shell (AW), where the same pattern of airway and intrathoracic pressure occurs but the muscles are not loaded because Prs (i.e., mouth pressure minus pressure in the shell is unchanged, and 3) positive pressure in proportion to volume at the shell only, loading the chest wall but causing no change in airway or thoracic pressures (CW). The threshold for detection (delta E50) with the three types of application was determined in seven normal subjects: 2.16 +/- 0.22, 2.65 +/- 0.54, and 6.21 +/- 0.85 (SE) cmH2O/l for T, AW, and CW, respectively. Therefore the active chest wall, including muscles, is a much less potent source of information than structures affected by the negative airway and intrathoracic pressure. The latter account for the very low threshold for load detection.  相似文献   
8.
9.
K H Jung  E N Spudich  P Dag  J L Spudich 《Biochemistry》1999,38(40):13270-13274
Sensory rhodopsin I (SRI) is a seven-transmembrane helix retinylidene protein that mediates color-sensitive phototaxis responses through its bound transducer HtrI in the archaeon Halobacterium salinarum. Deprotonation of the Schiff base attachment site of the chromophore accompanies formation of the SRI signaling state, S(373). We measured the rate of laser flash-induced S(373) formation in the presence and absence of HtrI, and the effects of mutations in SRI or HtrI on the kinetics of this process. In the absence of HtrI, deprotonation occurs rapidly (halftime 10 micros) if the proton acceptor Asp76 is ionized (pK(a) = approximately 7), and only very slowly (halftime > 10 ms) when Asp76 is protonated. Transducer-binding, although it increases the pK(a) of Asp76 so that it is protonated throughout the range of pH studied, results in a first order, pH-independent rate of S(373) formation of approximately 300 micros. Therefore, the complexation of HtrI facilitates the proton-transfer reaction, increasing the rate approximately 50-fold at pH6. Arrhenius analysis shows that HtrI-binding accelerates the reaction primarily by an entropic effect, suggesting HtrI constrains the SRI molecule in the complex. Function-perturbing mutations in SRI and HtrI also alter the rate of S(373) formation and the lambda(max) of the parent state as assessed by laser flash-induced kinetic difference spectroscopy, and shifts to longer wavelength are correlated with slower deprotonation. The data indicate that HtrI affects electrostatic interactions of the protonated Schiff base and not only receives the signal from SRI but also optimizes the photochemical reaction process for SRI signaling.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号