首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1218篇
  免费   93篇
  2023年   6篇
  2022年   3篇
  2021年   18篇
  2020年   14篇
  2019年   16篇
  2018年   39篇
  2017年   24篇
  2016年   42篇
  2015年   65篇
  2014年   81篇
  2013年   86篇
  2012年   111篇
  2011年   85篇
  2010年   65篇
  2009年   57篇
  2008年   99篇
  2007年   85篇
  2006年   58篇
  2005年   60篇
  2004年   60篇
  2003年   53篇
  2002年   49篇
  2001年   23篇
  2000年   33篇
  1999年   17篇
  1998年   8篇
  1997年   7篇
  1996年   4篇
  1995年   1篇
  1993年   2篇
  1992年   2篇
  1991年   7篇
  1990年   3篇
  1989年   5篇
  1988年   3篇
  1985年   1篇
  1984年   1篇
  1983年   1篇
  1980年   1篇
  1979年   1篇
  1977年   3篇
  1976年   1篇
  1975年   1篇
  1974年   2篇
  1971年   1篇
  1970年   2篇
  1969年   1篇
  1968年   1篇
  1967年   2篇
  1964年   1篇
排序方式: 共有1311条查询结果,搜索用时 218 毫秒
1.
2.
Cancer cell motility is a key phenomenon regulating invasion and metastasis. Focal adhesion kinase (FAK) plays a major role in cellular adhesion and metastasis of various cancers. The relationship between dietary supplementation of calcium and colon cancer has been extensively investigated. However, the effect of calcium (Ca2+) supplementation on calpain-FAK-motility is not clearly understood. We sought to identify the mechanism of FAK cleavage through Ca2+ bound lactate (CaLa), its downstream signaling and role in the motility of human colon cancer cells. We found that treating HCT116 and HT-29 cells with CaLa immediately increased the intracellular Ca2+ (iCa2+) levels for a prolonged period of time. Ca2+ influx induced cleavage of FAK into an N-terminal FAK (FERM domain) in a dose-dependent manner. Phosphorylated FAK (p-FAK) was also cleaved in to its p-N-terminal FAK. CaLa increased colon cancer cells motility. Calpeptin, a calpain inhibitor, reversed the effects of CaLa on FAK and pFAK cleavage in both cancer cell lines. The cleaved FAK translocates into the nucleus and modulates p53 stability through MDM2-associated ubiquitination. CaLa-induced Ca2+ influx increased the motility of colon cancer cells was mediated by calpain activity through FAK and pFAK protein destabilization. In conclusion, these results suggest that careful consideration may be given in deciding dietary Ca2+ supplementation to patient undergoing treatment for metastatic cancer.  相似文献   
3.
Plant gene responses to frequency-specific sound signals   总被引:1,自引:0,他引:1  
We identified a set of sound-responsive genes in plants using a sound-treated subtractive library and demonstrated sound regulation through mRNA expression analyses. Under both light and dark conditions, sound up-regulated expression of rbcS and ald. These are also light-responsive genes and these results suggest that sound could represent an alternative to light as a gene regulator. Ald mRNA expression increased significantly with treatment at 125 and 250 Hz, whereas levels decreased significantly with treatment at 50 Hz, indicating a frequency-specific response. To investigate whether the ald promoter responds to sound, we generated transgenic rice plants harboring a chimeric gene comprising a fusion of the ald promoter and GUS reporter. In three independent transgenic lines treated with 50 or 250 Hz for 4 h, GUS mRNA expression was up-regulated at 250 Hz, but down-regulated at 50 Hz. Thus, the sound-responsive mRNA expression pattern observed for the ald promoter correlated closely with that of ald, suggesting that the 1,506 bp ald promoter is sound-responsive. Therefore, we propose that in transgenic plants, specific frequencies of sound treatment could be used to regulate the expression of any gene fused to the ald promoter.  相似文献   
4.
As part of the development of carbon-coated prosthetic devices, the adhesion of thin carbon films to metallic substrates has been studied. The bond strength of carbon films about 5000 A thick on Ti-6A1-4V and stainless steel was measured in a pull test and found to be greater than 4700 psi. Auger electron spectroscopy showed a reactive film/substrate interface. The ultimate bond strength was found to be dependent on the substrate and the deposition parameters.  相似文献   
5.
Upon tumour necrosis factor alpha (TNFα) stimulation, cells respond actively by way of cell survival, apoptosis or programmed necrosis. The receptor‐interacting proteins 1 (RIP1) and 3 (RIP3) are responsible for TNFα‐mediated programmed necrosis. To delineate the differential contributions of RIP3 and RIP1 to programmed necrosis, L929 cells were stimulated with TNFα, carbobenzoxy‐valyl‐alanyl‐aspartyl‐[O‐methyl]‐fluoromethylketone (zVAD) or zVAD along with TNFα following RNA interference against RIP1 and RIP3, respectively. RIP1 silencing did not protect cells from TNFα‐mediated cell death, while RIP3 down‐regulation made them refractory to TNFα. The heat shock protein 90 inhibitor geldanamycin (GA) down‐regulated both RIP1 and RIP3 expression, which rendered cells resistant to zVAD/TNFα‐mediated cell death but not to TNFα‐mediated cell death alone. Therefore, the protective effect of GA on zVAD/TNFα‐stimulated necrosis might be attributed to RIP3, not RIP1, down‐regulation. Pretreatment of L929 cells with rapamycin mitigated zVAD‐mediated cell death, while the autophagy inhibitor chloroquine did not affect necrotic cell death. Meanwhile, necrotic cell death by zVAD and TNFα was caused by reactive oxygen species generation and effectively diminished by lipid‐soluble butylated hydroxyanisole. Taken together, the results indicate that RIP1 and RIP3 can independently mediate death signals being transduced by two different death stimuli, zVAD and TNFα. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
6.
In Fusarium graminearum, a trichothecene biosynthetic complex known as the toxisome forms ovoid and spherical structures in the remodelled endoplasmic reticulum (ER) under mycotoxin-inducing conditions. Previous studies also demonstrated that disruption of actin and tubulin results in a significant decrease in deoxynivalenol (DON) biosynthesis in F. graminearum. However, the functional association between the toxisome and microtubule components has not been clearly defined. In this study we tested the hypothesis that the microtubule network provides key support for toxisome assembly and thus facilitates DON biosynthesis. Through fluorescent live cell imaging, knockout mutant generation, and protein–protein interaction assays, we determined that two of the four F. graminearum tubulins, α1 and β2 tubulins, are indispensable for DON production. We also showed that these two tubulins are directly associated. When the α1–β2 tubulin heterodimer is disrupted, the metabolic activity of the toxisome is significantly suppressed, which leads to significant DON biosynthesis impairment. Similar phenotypic outcomes were shown when F. graminearum wild type was treated with carbendazim, a fungicide that binds to microtubules and disrupts spindle formation. Based on our results, we propose a model where α1–β2 tubulin heterodimer serves as the scaffold for functional toxisome assembly in F. graminearum.  相似文献   
7.
Poly(A)-binding proteins are highly conserved among eukaryotes and regulate stability of mRNA and translation. Among C. elegans homologues, pab-1 mutants showed defects in germline mitotic proliferation. Unlike pab-1 mutants, pab-1 RNAi at every larval stage caused arrest of germline development at the following stage, indicating that pab-1 is required for the entire postembryonic germline development. This idea is supported by the observations that the mRNA level of pab-1 increased throughout postembryonic development and its protein expression was germline-enriched. PAB-1 localized to P granules and the cytoplasm in the germline. PAB-1 colocalized with CGH-1 and CAR-1 and affected their localization, suggesting that PAB-1 is a component of processing (P)-bodies that interacts with them. The mRNA and protein levels of representative germline genes, rec-8, GLP-1, rme-2, and msp-152, were decreased after pab-1 RNAi. Although the mRNA level of msp-152 was increased in cgh-1 mutant, it was also significantly reduced by pab-1 RNAi. Our results suggest that PAB-1 positively regulates the mRNA levels of germline genes, which is likely facilitated by the interaction of PAB-1 with other P-body components, CGH-1 and CAR-1.  相似文献   
8.
Recent studies have demonstrated that microglial hyperactivation-mediated neuroinflammation is involved in the pathogenesis of several neurodegenerative diseases. Thus, inhibiting microglial production of the neurotoxic mediator tumor necrosis factor-α (TNF-α) is considered a promising strategy to protect against neurodegeneration. Here, we investigated the inhibitory effect of licorice-derived dehydroglyasperin C (DGC) on lipopolysaccharide (LPS)-induced TNF-α production and inflammation-mediated neurodegeneration. We found that DGC pre-treatment attenuated TNF-α production in response to LPS stimulation of BV-2 microglia. DGC pre-treatment attenuated LPS-induced inhibitor of κB-α (IκB-α) and p65 phosphorylation and decreased the DNA binding activity of nuclear factor-κB (NF-κB). DGC pre-treatment also inhibited LPS-mediated phosphorylation of p38 mitogen-activated protein kinases (MAPKs) and extracellular signal-regulated kinase (ERK). Interestingly, DGC treatment of BV-2 microglia significantly increased MAPK phosphatase 1 (MKP-1) mRNA and protein expression, which is a phosphatase of p38 MAPK and ERK, suggesting that the DGC-mediated increase in MKP-1 expression might inhibit LPS-induced MAPKs and NF-κB activation and further TNF-α production. We also found that LPS-mediated microglial neurotoxicity can be attenuated by DGC. The addition of conditioned media (CM) from DGC- and LPS-treated microglia to neurons helped maintain healthy cell body and neurite morphology and increased the number of microtubule-associated protein 2-positive cells and the level of synaptophysin compared to treatment with CM from LPS-treated microglia. Taken together, these data suggest that DGC isolated from licorice may inhibit microglia hyperactivation by increasing MKP-1 expression and acting as a potent anti-neurodegenerative agent.  相似文献   
9.
10.
Synaptic adhesion molecules regulate diverse aspects of synapse formation and maintenance. Many known synaptic adhesion molecules localize at excitatory synapses, whereas relatively little is known about inhibitory synaptic adhesion molecules. Here we report that IgSF9b is a novel, brain-specific, homophilic adhesion molecule that is strongly expressed in GABAergic interneurons. IgSF9b was preferentially localized at inhibitory synapses in cultured rat hippocampal and cortical interneurons and was required for the development of inhibitory synapses onto interneurons. IgSF9b formed a subsynaptic domain distinct from the GABAA receptor– and gephyrin-containing domain, as indicated by super-resolution imaging. IgSF9b was linked to neuroligin 2, an inhibitory synaptic adhesion molecule coupled to gephyrin, via the multi-PDZ protein S-SCAM. IgSF9b and neuroligin 2 could reciprocally cluster each other. These results suggest a novel mode of inhibitory synaptic organization in which two subsynaptic domains, one containing IgSF9b for synaptic adhesion and the other containing gephyrin and GABAA receptors for synaptic transmission, are interconnected through S-SCAM and neuroligin 2.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号