首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   786382篇
  免费   95267篇
  国内免费   403篇
  2016年   8674篇
  2015年   13193篇
  2014年   15191篇
  2013年   21295篇
  2012年   24154篇
  2011年   24113篇
  2010年   16295篇
  2009年   15527篇
  2008年   22131篇
  2007年   22719篇
  2006年   21241篇
  2005年   20536篇
  2004年   20333篇
  2003年   19680篇
  2002年   19080篇
  2001年   34544篇
  2000年   35015篇
  1999年   28032篇
  1998年   10499篇
  1997年   11117篇
  1996年   10619篇
  1995年   10388篇
  1994年   10234篇
  1993年   10069篇
  1992年   23742篇
  1991年   23009篇
  1990年   22636篇
  1989年   21962篇
  1988年   20224篇
  1987年   19857篇
  1986年   18206篇
  1985年   18280篇
  1984年   15206篇
  1983年   13267篇
  1982年   10617篇
  1981年   9445篇
  1980年   8981篇
  1979年   14614篇
  1978年   11741篇
  1977年   10618篇
  1976年   10009篇
  1975年   10852篇
  1974年   11670篇
  1973年   11455篇
  1972年   10271篇
  1971年   9518篇
  1970年   8138篇
  1969年   7698篇
  1968年   6877篇
  1967年   6204篇
排序方式: 共有10000条查询结果,搜索用时 109 毫秒
1.
During epithelial cell polarization, Yurt (Yrt) is initially confined to the lateral membrane and supports the stability of this membrane domain by repressing the Crumbs-containing apical machinery. At late stages of embryogenesis, the apical recruitment of Yrt restricts the size of the apical membrane. However, the molecular basis sustaining the spatiotemporal dynamics of Yrt remains undefined. In this paper, we report that atypical protein kinase C (aPKC) phosphorylates Yrt to prevent its premature apical localization. A nonphosphorylatable version of Yrt dominantly dismantles the apical domain, showing that its aPKC-mediated exclusion is crucial for epithelial cell polarity. In return, Yrt counteracts aPKC functions to prevent apicalization of the plasma membrane. The ability of Yrt to bind and restrain aPKC signaling is central for its role in polarity, as removal of the aPKC binding site neutralizes Yrt activity. Thus, Yrt and aPKC are involved in a reciprocal antagonistic regulatory loop that contributes to segregation of distinct and mutually exclusive membrane domains in epithelial cells.  相似文献   
2.
Human mast cells (MCs) contain TG-rich cytoplasmic lipid droplets (LDs) with high arachidonic acid (AA) content. Here, we investigated the functional role of adipose TG lipase (ATGL) in TG hydrolysis and the ensuing release of AA as substrate for eicosanoid generation by activated human primary MCs in culture. Silencing of ATGL in MCs by siRNAs induced the accumulation of neutral lipids in LDs. IgE-dependent activation of MCs triggered the secretion of the two major eicosanoids, prostaglandin D2 (PGD2) and leukotriene C4 (LTC4). The immediate release of PGD2 from the activated MCs was solely dependent on cyclooxygenase (COX) 1, while during the delayed phase of lipid mediator production, the inducible COX-2 also contributed to its release. Importantly, when ATGL-silenced MCs were activated, the secretion of both PGD2 and LTC4 was significantly reduced. Interestingly, the inhibitory effect on the release of LTC4 was even more pronounced in ATGL-silenced MCs than in cytosolic phospholipase A2-silenced MCs. These data show that ATGL hydrolyzes AA-containing TGs present in human MC LDs and define ATGL as a novel regulator of the substrate availability of AA for eicosanoid generation upon MC activation.  相似文献   
3.
4.
Epstein-Barr virus (EBV) is a gammaherpesvirus, associated with infectious mononucleosis and various types of malignancy. We focused here on the BDLF4 gene of EBV and identified it as a lytic gene, expressed with early kinetics. Viral late gene expression of the BDLF4 knockout strain was severely restricted; this could be restored by an exogenous supply of BDLF4. These results indicate that BDLF4 is important for the EBV lytic replication cycle, especially in late gene expression.  相似文献   
5.
More than 50 hereditary lysosomal storage disorders (LSDs) are currently described. Most of these disorders are due to a deficiency of certain hydrolases/glycosidases and subsequent accumulation of nonhydrolyzable carbohydrate-containing compounds in lysosomes. Such accumulation causing hypertrophy of the lysosomal compartment is a characteristic feature of affected cells in LSDs. The investigation of biochemical and cellular parameters is of particular interest for understanding “life” of lysosomes in the normal state and in LSDs. This review highlights the wide spectrum of biochemical and morphological changes during developing LSDs that are extremely critical for many metabolic processes inside the various cells and tissues of affected persons. The data presented will help establish new complex strategies for metabolic correction of LSDs.  相似文献   
6.
7.
8.
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号