首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   469篇
  免费   26篇
  2021年   5篇
  2020年   3篇
  2019年   3篇
  2018年   11篇
  2017年   2篇
  2016年   11篇
  2015年   17篇
  2014年   14篇
  2013年   33篇
  2012年   40篇
  2011年   22篇
  2010年   16篇
  2009年   24篇
  2008年   30篇
  2007年   28篇
  2006年   31篇
  2005年   29篇
  2004年   21篇
  2003年   26篇
  2002年   22篇
  2001年   9篇
  2000年   11篇
  1999年   11篇
  1998年   3篇
  1997年   5篇
  1996年   3篇
  1995年   6篇
  1994年   4篇
  1993年   4篇
  1992年   7篇
  1991年   3篇
  1990年   5篇
  1989年   3篇
  1988年   3篇
  1987年   2篇
  1985年   1篇
  1984年   5篇
  1983年   1篇
  1982年   2篇
  1981年   3篇
  1980年   1篇
  1979年   1篇
  1978年   1篇
  1977年   1篇
  1975年   1篇
  1974年   3篇
  1973年   1篇
  1971年   2篇
  1970年   1篇
  1969年   3篇
排序方式: 共有495条查询结果,搜索用时 218 毫秒
1.
Epstein-Barr virus (EBV) is a gammaherpesvirus, associated with infectious mononucleosis and various types of malignancy. We focused here on the BDLF4 gene of EBV and identified it as a lytic gene, expressed with early kinetics. Viral late gene expression of the BDLF4 knockout strain was severely restricted; this could be restored by an exogenous supply of BDLF4. These results indicate that BDLF4 is important for the EBV lytic replication cycle, especially in late gene expression.  相似文献   
2.
Nucleotide sequences proximal to the initiation codon of a gene are known to affect the expression efficiency of that gene. We screened 10-bp random sequences upstream of the initiation codon of the zeocin-resistance gene to identify sequences that could enhance its expression in Saccharomyces cerevisiae. Of the isolated sequences, 20 sequences exhibited a common feature, i.e. ATG at the position −9 through −7, which resulted in the incorporation of three amino acids at the N-terminus of the protein. The introduction of these sequences upstream of the initiation codon increased the expression levels of zeocin-resistance protein by 2.2–6.5-fold. One of these sequences increased the expression levels of three out of four human proteins, thereby suggesting that this sequence may also enhance the expression efficiency of mammalian proteins in yeast.  相似文献   
3.
4.
Human calcium/calmodulin-dependent protein kinase IV (CAMKIV) is a member of Ser/Thr kinase family, and is associated with different types of cancer and neurodegenerative diseases. Vanillin is a natural compound, a primary component of the extract of the vanilla bean which possesses varieties of pharmacological features including anti-oxidant, anti-inflammatory, anti-bacterial and anti-tumor. Here, we have investigated the binding mechanism and affinity of vanillin to the CAMKIV which is being considered as a potential drug target for cancer and neurodegenerative diseases. We found that vanillin binds strongly to the active site cavity of CAMKIV and stabilized by a large number of non-covalent interactions. We explored the utility of vanillin as anti-cancer agent and found that it inhibits the proliferation of human hepatocyte carcinoma (HepG2) and neuroblastoma (SH-SY5Y) cells in a dose-dependent manner. Furthermore, vanillin treatment resulted into the significant reduction in the mitochondrial membrane depolarization and ROS production that eventually leads to apoptosis in HepG2 and SH-SY5Y cancer cells. These findings may offer a novel therapeutic approach by targeting the CAMKIV using natural product and its derivative with a minimal side effect.  相似文献   
5.
6.
Adherens junction (AJ) between dopaminergic (DA) progenitors maintains the structure of ventricular zone and polarity of radial glia cells in the ventral midbrain (vMB) during embryonic development. However, it is unclear how loss of N‐cadherin might influence the integrity of the AJ and the process of DA neurogenesis. Here, we used conditional gene targeting approaches to perform the region‐specific removal of N‐cadherin in the neurogenic niche of DA neurons in the vMB. Removal of N‐cadherin in the vMB using Shh‐Cre disrupts the AJs of DA progenitors and radial glia processes in the vMB. Surprisingly, loss of N‐cadherin in the vMB leads to a significant expansion of DA progenitors, including those expressing Sox2, Ngn2, and Otx2. Cell cycle analyses reveal that the cell cycle exit in the progenitor cells is decreased in the mutants from E11.5 to E12.5. In addition, the efficiency of DA progenitors in differentiating into DA neurons is decreased from E10.5 to E12.5, leading to a marked reduction in the number of DA neurons at E11.5, E12.5, and E17.5. Loss of N‐cadherin leads to the diffuse distribution of β‐catenin proteins, which are a critical component of AJ and Wnt signaling, from the AJ throughout the entire cytoplasm in neuroepithelial cells, suggesting that canonical Wnt signaling might be activated in the DA progenitors in vMB. Taken together, these results support the notion that N‐cadherin regulates the proliferation of DA progenitors and the differentiation of DA neurons through canonical Wnt‐β‐catenin signaling in the vMB. © 2013 Wiley Periodicals, Inc. Develop Neurobiol 73: 518–529, 2013  相似文献   
7.
8.
The critical step in meiosis is to attach homologous chromosomes to the opposite poles. In mouse oocytes, stable microtubule end-on attachments to kinetochores are not established until hours after spindle assembly, and phosphorylation of kinetochore proteins by Aurora B/C is responsible for the delay. Here we demonstrated that microtubule ends are actively prevented from stable attachment to kinetochores until well after spindle formation in Drosophila melanogaster oocytes. We identified the microtubule catastrophe-promoting complex Sentin-EB1 as a major factor responsible for this delay. Without this activity, microtubule ends precociously form robust attachments to kinetochores in oocytes, leading to a high proportion of homologous kinetochores stably attached to the same pole. Therefore, regulation of microtubule ends provides an alternative novel mechanism to delay stable kinetochore–microtubule attachment in oocytes.  相似文献   
9.
The age, growth, reproductive condition, and occurrence of natural hybrids of two Nematalosa species around Okinawa Island were examined using 128 specimens obtained from April 2003 to June 2004. Standard length (SL) reached approximately 150–210 mm within the first 2 years, and then remained stagnant. The maximum age for both sexes was ca. 5 years old. Maturity sizes and ages were estimated to be at least 173.2 mm SL and 2 years old for females and 192.6 mm SL and 3 years old for males. Spawnable individuals were mainly observed from January to March based on histological observations of gonads. Natural hybrids appeared at all sampling sites except for the Haneji Inlet and were dominant at Makiminato (in south-central Okinawa Island). Their incidence was also quite high (66.9%) in the Makiminato population, when compared with records for other marine fishes around Japan. In Okinawa Island, these shallow areas are rapidly decreasing in size because of recent reclamation and land exploitation. Hybrid production may be caused by not only the reproductive biology and sympatric distributions of the parent species but also recent environmental changes.  相似文献   
10.
Plant stem cells have several extraordinary features: they are generated de novo during development and regeneration, maintain their pluripotency, and produce another stem cell niche in an orderly manner. This enables plants to survive for an extended period and to continuously make new organs, representing a clear difference in their developmental program from animals. To uncover regulatory principles governing plant stem cell characteristics, our research project ‘Principles of pluripotent stem cells underlying plant vitality’ was launched in 2017, supported by a Grant-in-Aid for Scientific Research on Innovative Areas from the Japanese government. Through a collaboration involving 28 research groups, we aim to identify key factors that trigger epigenetic reprogramming and global changes in gene networks, and thereby contribute to stem cell generation. Pluripotent stem cells in the shoot apical meristem are controlled by cytokinin and auxin, which also play a crucial role in terminating stem cell activity in the floral meristem; therefore, we are focusing on biosynthesis, metabolism, transport, perception, and signaling of these hormones. Besides, we are uncovering the mechanisms of asymmetric cell division and of stem cell death and replenishment under DNA stress, which will illuminate plant-specific features in preserving stemness. Our technology support groups expand single-cell omics to describe stem cell behavior in a spatiotemporal context, and provide correlative light and electron microscopic technology to enable live imaging of cell and subcellular dynamics at high spatiotemporal resolution. In this perspective, we discuss future directions of our ongoing projects and related research fields.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号