首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11篇
  免费   3篇
  2019年   2篇
  2017年   1篇
  2016年   2篇
  2015年   2篇
  2014年   3篇
  2009年   3篇
  2008年   1篇
排序方式: 共有14条查询结果,搜索用时 31 毫秒
1.
In small mammals living in highly seasonal environments, observationalstudies show that female home range size and exclusiveness aresmaller in the nonbreeding winter season than in the breedingsummer season. This has led to the notion that nonbreeding femalesare more social and decrease territorial behavior during winter.However, because territoriality decreases with increasing populationdensity, and density normally increases during the breedingseason, the effects of density and season on social structureare usually confounded. To find out which of the 2 factors explainsspace use, we experimentally established 3 high-density and3 low-density root vole (Microtus oeconomus) populations inlate spring and monitored the populations into the nonbreedingwinter season. Population sizes were controlled throughout thebreeding period to minimize seasonal variation in density. Homerange sizes were larger in founder females than in field-bornfemales but did not change with season or density. Area exclusivelyused by individual females was lower in winter than summer,and founder females decreased exclusiveness as density increased.We argue that this seasonal pattern of space use might be causedby variation in benefits of group living, whereas founder femalesalso responded to density-dependent competition by reducingarea exclusively used.  相似文献   
2.
Ecosystems - Mammalian herbivores shape the structure and function of many nutrient-limited or low-productive terrestrial ecosystems through modification of plant communities and plant–soil...  相似文献   
3.
The relative importance of top‐down and bottom‐up mechanisms in shaping community structure is still a highly controversial topic in ecology. Predatory top‐down control of herbivores is thought to relax herbivore impact on the vegetation through trophic cascades. However, trophic cascades may be weak in terrestrial systems as the complexity of food webs makes responses harder to predict. Alternatively, top‐down control prevails, but the top‐level (predator or herbivore) changes according to productivity levels. Here we show how spatial variation in the occurrence of herbivores (lemmings and voles) and their predators (mustelids and foxes) relates with grazing damage in landscapes with different net primary productivity, generating two and three trophic level communities, during the 2007 rodent peak in northern Norway. Lemmings were most abundant on the unproductive high‐altitude tundra, where few predators were present and the impact of herbivores on vegetation was strong. Voles were most common on a productive, south facing slope, where numerous predators were present, and the impacts of herbivores on vegetation were weak. The impact of herbivores on the vegetation was strong only when predators were not present, and this cannot be explained by between‐habitat differences in the abundance of plant functional groups. We thus conclude that predators influence the plant community via a trophic cascade in a spatial pattern that support the exploitation ecosystems hypothesis. The responses to grazing also differed between plant functional groups, with implications for short and long‐term consequences for plant communities.  相似文献   
4.
Both the theory and the observations suggest that, there are strong links between herbivores and plants in terrestrial ecosystems; although, the effect of herbivores on plant community biomass is often attributed to variations in plant palatability. The existence of a strong link is commonly tested by constructing exclosures that exclude herbivores during a period of time. We here present data from two long-term (9 and 20 years, respectively) herbivore exclosure studies in lemming habitats on arctic tundra in northernmost Norway. The exclusion of all mammalian herbivores triggered strong increases in community level plant biomass and substantial changes in plant community composition. Palatable plants like graminoids and large bryophytes, as well as unpalatable plants like evergreen ericoids, deciduous shrubs, and lichens were all favored by excluding lemmings. These results reveal that a substantial increase in community biomass which occurs only when plant species capable of accumulating biomass are present, and palatability is a poor predictor of long-term responses of plants to excluding herbivores.  相似文献   
5.
Climate change is resulting in a rapid expansion of shrubs in the Arctic. This expansion has been shown to be reinforced by positive feedbacks, and it could thus set the ecosystem on a trajectory toward an alternate, more productive regime. Herbivores, on the other hand, are known to counteract the effects of simultaneous climate warming on shrub biomass. However, little is known about the impact of herbivores on resilience of these ecosystems, that is, the capacity of a system to absorb disturbance and still remain in the same regime, retaining the same function, structure, and feedbacks. Here, we investigated how herbivores affect resilience of shrub‐dominated systems to warming by studying the change of shrub biomass after a cessation of long‐term experimental warming in a forest–tundra ecotone. As predicted, warming increased the biomass of shrubs, and in the absence of herbivores, shrub biomass in tundra continued to increase 4 years after cessation of the artificial warming, indicating that positive effects of warming on plant growth may persist even over a subsequent colder period. Herbivores contributed to the resilience of these systems by returning them back to the original low‐biomass regime in both forest and tundra habitats. These results support the prediction that higher shrub biomass triggers positive feedbacks on soil processes and microclimate, which enable maintaining the rapid shrub growth even in colder climates. Furthermore, the results show that in our system, herbivores facilitate the resilience of shrub‐dominated ecosystems to climate warming.  相似文献   
6.
Communities are assembled from species that evolve or colonise a given geographic region, and persist in the face of abiotic conditions and interactions with other species. The evolutionary and colonisation histories of communities are characterised by phylogenetic diversity, while functional diversity is indicative of abiotic and biotic conditions. The relationship between functional and phylogenetic diversity infers whether species functional traits are divergent (differing between related species) or convergent (similar among distantly related species). Biotic interactions and abiotic conditions are known to influence macroecological patterns in species richness, but how functional and phylogenetic diversity of guilds vary with biotic factors, and the relative importance of biotic drivers in relation to geographic and abiotic drivers is unknown. In this study, we test whether geographic, abiotic or biotic factors drive biome‐scale spatial patterns of functional and phylogenetic diversity and functional convergence in vertebrate herbivores across the Arctic tundra biome. We found that functional and phylogenetic diversity both peaked in the western North American Arctic, and that spatial patterns in both were best predicted by trophic interactions, namely vegetation productivity and predator diversity, as well as climatic severity. Our results show that both bottom–up and top–down trophic interactions, as well as winter temperatures, drive the functional and phylogenetic structure of Arctic vertebrate herbivore assemblages. This has implications for changing Arctic ecosystems; under future warming and northward movement of predators potential increases in phylogenetic and functional diversity in vertebrate herbivores may occur. Our study thus demonstrates that trophic interactions can determine large‐scale functional and phylogenetic diversity just as strongly as abiotic conditions.  相似文献   
7.
Spatial variation in the strength of trophic cascades in arctic tundra has been related to flows of subsidies across ecosystem boundaries. Here, we ask whether the input of marine subsidies in tundra systems would cause spatial variation in the strength of rodent–plant interactions between coastal areas, where predators have access to marine‐derived resources, and non‐subsidized inland areas of northern Fennoscandia. We present a detailed evaluation of predator–rodent–vegetation interactions along a coast‐inland gradient, during the 2011 rodent outbreak and the two following decline years, by using direct assessments of rodent impacts and tracing of marine‐derived nutrients in the food web. Our results revealed that the main rodent predator during summer, the long‐tailed jaeger Stercorarius longicaudus, did not benefit from marine resources while breeding (relative dietary proportion in chicks’ diet = 0–3%). Contrary to this pattern, parasitic jaegers S. parasiticus, bred exclusively near the coast and preyed effectively on both marine resources (41% of chicks’ diet) and rodents (12%). Mammalian predators also showed a higher activity during winter near the coast. Despite overall higher predator numbers, no evidence was found for lower rodent population growth rates during the three monitoring summers and for weaker rodent grazing impacts in the coastal area. Instead, we documented pronounced damages caused by lemmings and voles on bryophytes and vascular plants, especially dwarf shrubs (e.g. Vaccinum myrtillus) all along the coast–inland gradient. Taken together, our results did not support the hypothesis that marine subsidies would trigger a trophic cascade in coastal tundra areas of northern Fennoscandia during a major rodent outbreak, probably due to a relatively low diversity of marine‐subsidized predators in the region. Comparative observational and experimental studies at large spatial scales in various arctic regions are absolutely necessary for a better understanding of factors causing regional variations in the functioning of arctic food webs.  相似文献   
8.
9.
Understanding the determinants of spatial and temporal differences in the relative strength of consumer–resource interactions is an important endeavour in ecology. Here, we explore the necessary conditions for temporal shifts in the relative strength of rodent–plant interactions in an area characterised by profound spatial differences in trophic control, with predator–prey interactions prevailing in productive habitats and rodent–plant interactions dominating unproductive habitats of the forest–tundra ecotone. We report data obtained during the exceptionally massive rodent outbreak of 2010–2012 in northernmost Fennoscandia, including an experimental manipulation of herbivore access to vegetation plots across a large-scale productivity gradient, multiple observational measures of plant–rodent interactions linked to rodent abundance data and a large-scale survey of breeding avian predators and mammalian predator activity. Unexpectedly, rodent grazing impacts documented during the rodent outbreak were uniformly strong across the landscape, regardless of habitat productivity. The runaway response in rodent populations was facilitated by a high population growth rate in the early phase of the outbreak due to the extended absence of predators in productive habitats, concomitant with an exceptionally long-lasting lemming outbreak in unproductive habitats. Our results showed that spatio-temporal variation in trophic control also occurs in ecosystems structured according to the exploitation ecosystems hypothesis and emphasises the importance of long-term studies to capture nonlinear and stochastic features that shape ecosystem functioning. In this context, the temporary release from top–down regulation in productive habitats caused strong grazing impacts that may be crucial for the resilience of tundra ecosystems under the threat of climate change-driven shrub encroachment.  相似文献   
10.
Large predators may affect the hunting efficiency of smaller ones directly by decreasing their numbers, or indirectly by altering their behaviour. Either way this may have positive effects on the density of shared prey. Using large outdoor enclosures, we experimentally studied whether the presence of the Tengmalm's owl Aegolius funereus affects the hunting efficiency of the smallest member of the vole-eating predator guild, the least weasel Mustela nivalis, as measured by population responses of coexisting prey species, the field vole Microtus agrestis and the sibling vole M. levis . We compared the density and survival probability of vole populations exposed to no predation, weasel predation or combined predation by a weasel and an owl. The combined predation of both owl and weasel did not result in obvious changes in the density of sibling and field vole populations compared to the control populations without predators, while predation by least weasel alone decreased the densities of sibling voles and induced a similar trend in field vole densities. Survival of field voles was not affected by predator treatment while sibling vole survival was lower in predator treated populations than in control populations. Our results suggest that weasels are intimidated by avian predators, but without changing the effects of predators on competitive situations between the two vole species. Non-lethal effects of intraguild predation therefore will not necessarily change competitive interactions between shared prey species.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号