首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   52篇
  免费   1篇
  2020年   1篇
  2016年   1篇
  2015年   2篇
  2014年   2篇
  2013年   6篇
  2012年   2篇
  2011年   2篇
  2008年   3篇
  2007年   10篇
  2006年   4篇
  2005年   4篇
  2004年   5篇
  2003年   3篇
  2002年   2篇
  2001年   2篇
  1999年   1篇
  1998年   1篇
  1995年   1篇
  1981年   1篇
排序方式: 共有53条查询结果,搜索用时 15 毫秒
1.
The purpose of this study was to examine the hypothesis that the operating point of the cardiopulmonary baroreflex resets to the higher cardiac filling pressure of exercise associated with the increased cardiac filling volumes. Eight men (age 26 +/- 1 yr; height 180 +/- 3 cm; weight 86 +/- 6 kg; means +/- SE) participated in the present study. Lower body negative pressure (LBNP) was applied at 8 and 16 Torr to decrease central venous pressure (CVP) at rest and during steady-state leg cycling at 50% peak oxygen uptake (104 +/- 20 W). Subsequently, two discrete infusions of 25% human serum albumin solution were administered until CVP was increased by 1.8 +/- 0.6 and 2.4 +/- 0.4 mmHg at rest and 2.9 +/- 0.9 and 4.6 +/- 0.9 mmHg during exercise. During all protocols, heart rate, arterial blood pressure, and CVP were recorded continuously. At each stage of LBNP or albumin infusion, forearm blood flow and cardiac output were measured. During exercise, forearm vascular conductance increased from 7.5 +/- 0.5 to 8.7 +/- 0.6 U (P = 0.024) and total systemic vascular conductance from 7.2 +/- 0.2 to 13.5 +/- 0.9 l.min(-1).mmHg(-1) (P < 0.001). However, there was no significant difference in the responses of both forearm vascular conductance and total systemic vascular conductance to LBNP and the infusion of albumin between rest and exercise. These data indicate that the cardiopulmonary baroreflex had been reset during exercise to the new operating point associated with the exercise-induced change in cardiac filling volume.  相似文献   
2.
We sought to test the hypothesis that the carotid baroreflex (CBR) alters mean leg blood flow (LBF) and leg vascular conductance (LVC) at rest and during exercise. In seven men and one woman, 25 +/- 2 (SE) yr of age, CBR control of LBF and LVC was determined at rest and during steady-state one-legged knee extension exercise at approximately 65% peak O(2) uptake. The application of 5-s pulses of +40 Torr neck pressure and -60 Torr neck suction significantly altered mean arterial pressure (MAP) and LVC both at rest and during exercise. CBR-mediated changes in MAP were similar between rest and exercise (P > 0.05). However, CBR-mediated decreases in LVC (%change) to neck pressure were attenuated in the exercising leg (16.4 +/- 1.6%) compared with rest (33 +/- 2.1%) and the nonexercising leg (23.7 +/- 1.9%) (P < 0.01). These data suggest CBR control of blood pressure is partially mediated by changes in leg vascular tone both at rest and during exercise. Furthermore, despite alterations in CBR-induced changes in LVC during exercise, CBR control of blood pressure was well maintained.  相似文献   
3.
ADP-ribosylation factor (Arf) 1 is thought to affect the morphologies of organelles, such as the Golgi apparatus, and regulate protein trafficking pathways. Mice have six Arf isoforms. In knockdown experiments with HeLa cells, no single Arf isoform among Arf1–5 is required for organelle morphologies or any membrane trafficking step. This suggests that the cooperation of two or more Arfs is a general feature. Although many cell biological and biochemical analyses have proven the importance of Arf1, the physiological roles of Arf1 in mice remain unknown. To investigate the activity of Arf1 in vivo, we established Arf1-deficient mice. Arf−/− blastocysts were identified at the expected Mendelian ratio. The appearance of these blastocysts was indistinguishable from that of wild-type and Arf+/− blastocysts, and they grew normally in an in vitro culture system. However, Arf−/− embryos were degenerated at E5.5, and none survived to E12.5, suggesting that they died soon after implantation. These data establish for the first time that the Arf1 gene is indispensable for mouse embryonic development after implantation.  相似文献   
4.
We examined the effects of exposure to 10-12 days intermittent hypercapnia [IHC: 5:5-min hypercapnia (inspired fraction of CO(2) 0.05)-to-normoxia for 90 min (n = 10)], intermittent hypoxia [IH: 5:5-min hypoxia-to-normoxia for 90 min (n = 11)] or 12 days of continuous hypoxia [CH: 1,560 m (n = 7)], or both IH followed by CH on cardiorespiratory and cerebrovascular function during steady-state cycling exercise with and without hypoxia (inspired fraction of oxygen, 0.14). Cerebrovascular reactivity to CO(2) was also monitored. During all procedures, ventilation, end-tidal gases, blood pressure, muscle and cerebral oxygenation (near-infrared spectroscopy), and middle cerebral artery blood flow velocity (MCAv) were measured continuously. Dynamic cerebral autoregulation (CA) was assessed using transfer-function analysis. Hypoxic exercise resulted in increases in ventilation, hypocapnia, heart rate, and cardiac output when compared with normoxic exercise (P < 0.05); these responses were unchanged following IHC but were elevated following the IH and CH exposure (P < 0.05) with no between-intervention differences. Following IH and/or CH exposure, the greater hypocapnia during hypoxic exercise provoked a decrease in MCAv (P < 0.05 vs. preexposure) that was related to lowered cerebral oxygenation (r = 0.54; P < 0.05). Following any intervention, during hypoxic exercise, the apparent impairment in CA, reflected in lowered low-frequency phase between MCAv and BP, and MCAv-CO(2) reactivity, were unaltered. Conversely, during hypoxic exercise following both IH and/or CH, there was less of a decrease in muscle oxygenation (P < 0.05 vs. preexposure). Thus IH or CH induces some adaptation at the muscle level and lowers MCAv and cerebral oxygenation during hypoxic exercise, potentially mediated by the greater hypocapnia, rather than a compromise in CA or MCAv reactivity.  相似文献   
5.
Li X  Ogoh K  Ohba N  Liang X  Ohmiya Y 《Gene》2007,392(1-2):196-205
We determined the mitochondrial DNA (mtDNA) sequences of two luminous beetles (Arthropoda, Insecta, Coleoptera), Rhagophthalmus lufengensis from Yunnan, China and Rhagophthalmus ohbai from Yaeyama Island, Japan. We identified all the 37 mtDNA genes of R. lufengensis (15,982 bp) and the 34 genes of R. ohbai (15,704 bp). R. lufengensis and R. ohbai genomes have higher A + T contents than other coleopteran genomes although the gene arrangements are similar. Interestingly, in a study of the evolutionary relationship among R. lufengensis, R. ohbai and the firefly Pyrocoelia rufa, the phylogenetic tree inferred from lrRNA genes from mitochondrial genomes indicates a biogeographic relationship among the bioluminescent insects in East Asia and the phylogenetic tree inferred from luciferase-related genes from nuclear genomes shows an appropriate relationship among coleopterans, reflecting the evolutionary origin of bioluminescence. Thus, the mtDNAs of luminescent beetles can provide an insight into their evolutionary origin and biogeography.  相似文献   
6.
Non-receptor tyrosine kinase Abl is a well known regulator of the actin-cytoskeleton, including the formation of stress fibers and membrane ruffles. Vinexin is an adapter protein consisting of three SH3 domains, and involved in signal transduction and the reorganization of actin cytoskeleton. In this study, we found that vinexin alpha as well as beta interacts with c-Abl mainly through the third SH3 domain, and that vinexin and c-Abl were colocalized at membrane ruffles in rat astrocytes. This interaction was reduced by latrunculin B, suggesting an F-actin-mediated regulatory mechanism. We also found that vinexin alpha but not beta was phosphorylated at tyrosine residue when c-Abl or v-Abl was co-expressed. A mutational analysis identified tyrosine 127 on vinexin alpha as a major site of phosphorylation by c- or v-Abl. These results suggest that vinexin alpha is a novel substrate for Abl.  相似文献   
7.
The effects of anions on the thermostability of ovotransferrin (oTf) were investigated. The temperature, T(m), causing aggregation of oTf was measured in the presence or absence of anions, and the denaturation temperature, T(m)(DSC), was also determined by differential scanning calorimetry (DSC) in the presence of the citrate anion. We found that some anions (phosphate, sulfate and citrate) raised temperature T(m) of oTf by about 5-7 degrees C. However, neither sodium chloride nor sodium bicarbonate raised T(m) by that much. Temperature T(m) was increased by increasing the concentration of the citrate anion, and was in good agreement with denaturation temperature T(m)(DSC), suggesting that denaturation of the oTf molecules resulted in aggregation of oTf. We also demonstrated that the anions, especially sulfate, repressed the heat-aggregation of liquid egg white.The Van't Hoff plot from the T(m) and DeltaH(d) values revealed that two anion-binding sites were concerned with heat stabilization. These binding sites may have been concerned with sulfate binding (not bicarbonate binding) that is found in the crystal structure of apo-form of oTf, since the bicarbonate anion did not raise T(m).  相似文献   
8.
Above a certain level of cerebral activation the brain increases its uptake of glucose more than that of O(2), i.e., the cerebral metabolic ratio of O(2)/(glucose + 12 lactate) decreases. This study quantified such surplus brain uptake of carbohydrate relative to O(2) in eight healthy males who performed exhaustive exercise. The arterial-venous differences over the brain for O(2), glucose, and lactate were integrated to calculate the surplus cerebral uptake of glucose equivalents. To evaluate whether the amount of glucose equivalents depends on the time to exhaustion, exercise was also performed with beta(1)-adrenergic blockade by metoprolol. Exhaustive exercise (24.8 +/- 6.1 min; mean +/- SE) decreased the cerebral metabolic ratio from a resting value of 5.6 +/- 0.2 to 3.0 +/- 0.4 (P < 0.05) and led to a surplus uptake of glucose equivalents of 9 +/- 2 mmol. beta(1)-blockade reduced the time to exhaustion (15.8 +/- 1.7 min; P < 0.05), whereas the cerebral metabolic ratio decreased to an equally low level (3.2 +/- 0.3) and the surplus uptake of glucose equivalents was not significantly different (7 +/- 1 mmol; P = 0.08). A time-dependent cerebral surplus uptake of carbohydrate was not substantiated and, consequently, exhaustive exercise involves a brain surplus carbohydrate uptake of a magnitude comparable with its glycogen content.  相似文献   
9.
Glucose transporter 4 (GLUT4) is the main insulin-responsive glucose transporter in skeletal muscle and adipose tissue of human and rodent, and is translocated to the plasma membrane in response to insulin. GLUT2 is well known as the main glucose transporter in pancreatic islets and could highly regulate glucose-stimulated insulin secretion by B-cells as a glucose sensor. We confirmed the presence of GLUT4 mRNA and GLUT4 protein in pancreas in the human. Indirect immunohistochemistry showed that the pancreatic islets of human and rat were conspicuously labeled by anti-GLUT4 antibody. The presence of placental leucine aminopeptidase (P-LAP), a homologue of insulin-regulated aminopeptidase (IRAP), was also shown in the human pancreatic islet. IRAP/P-LAP is thought to be involved in glucose metabolism. This study provides the first evidence that GLUT4 is present in human and rat pancreatic islets and may suggest its specific role in glucose homeostasis in conjunction with IRAP/P-LAP.  相似文献   
10.
We sought to examine the influence of exercise intensity on carotid baroreflex (CBR) control of heart rate (HR) and mean arterial pressure (MAP) at the onset of exercise in humans. To accomplish this, eight subjects performed multiple 1-min bouts of isometric handgrip (HG) exercise at 15, 30, 45 and 60% maximal voluntary contraction (MVC), while breathing to a metronome set at eupneic frequency. Neck suction (NS) of -60 Torr was applied for 5 s at end expiration to stimulate the CBR at rest, at the onset of HG (<1 s), and after approximately 40 s of HG. Beat-to-beat measurements of HR and MAP were recorded throughout. Cardiac responses to NS at onset of 15% (-12 +/- 2 beats/min) and 30% (-10 +/- 2 beats/min) MVC HG were similar to rest (-10 +/- 1 beats/min). However, HR responses to NS were reduced at the onset of 45% and 60% MVC HG (-6 +/- 2 and -4 +/- 1 beats/min, respectively; P < 0.001). In contrast to HR, MAP responses to NS were not different from rest at exercise onset. Furthermore, both HR and MAP responses to NS applied at approximately 40s of HG were similar to rest. In summary, CBR control of HR was transiently blunted at the immediate onset of high-intensity HG, whereas MAP responses were preserved demonstrating differential baroreflex control of HR and blood pressure at exercise onset. Collectively, these results suggest that carotid-cardiac baroreflex control is dynamically modulated throughout isometric exercise in humans, whereas carotid baroreflex regulation of blood pressure is well-maintained.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号