首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1089篇
  免费   90篇
  2023年   4篇
  2021年   14篇
  2020年   15篇
  2019年   14篇
  2018年   27篇
  2017年   21篇
  2016年   30篇
  2015年   68篇
  2014年   74篇
  2013年   89篇
  2012年   134篇
  2011年   94篇
  2010年   68篇
  2009年   49篇
  2008年   87篇
  2007年   90篇
  2006年   53篇
  2005年   53篇
  2004年   36篇
  2003年   47篇
  2002年   56篇
  2001年   10篇
  2000年   3篇
  1999年   11篇
  1998年   3篇
  1997年   5篇
  1996年   5篇
  1995年   2篇
  1994年   2篇
  1993年   1篇
  1992年   1篇
  1991年   4篇
  1988年   1篇
  1986年   1篇
  1983年   1篇
  1982年   1篇
  1979年   3篇
  1978年   1篇
  1971年   1篇
排序方式: 共有1179条查询结果,搜索用时 46 毫秒
1.
2.
Hairless (H) is the major antagonist within the Notch signalling pathway of Drosophila melanogaster. By binding to Suppressor of Hairless [Su(H)] and two co-repressors, H induces silencing of Notch target genes in the absence of Notch signals. We have applied genomic engineering to create several new H alleles. To this end the endogenous H locus was replaced with an attP site by homologous recombination, serving as a landing platform for subsequent site directed integration of different H constructs. This way we generated a complete H knock out allele H attP, reintroduced a wild type H genomic and a cDNA-construct (H gwt, H cwt) as well as two constructs encoding H proteins defective of Su(H) binding (H LD, H iD). Phenotypes regarding viability, bristle and wing development were recorded, and the expression of Notch target genes wingless and cut was analysed in mutant wing discs or in mutant cell clones. Moreover, genetic interactions with Notch (N 5419) and Delta (Dl B2) mutants were addressed. Overall, phenotypes were largely as expected: both H LD and H iD were similar to the H attP null allele, indicating that most of H activity requires the binding of Su(H). Both rescue constructs H gwt and H cwt were homozygous viable without phenotype. Unexpectedly, the hemizygous condition uncovered that they were not identical to the wild type allele: notably H cwt showed a markedly reduced activity, suggesting the presence of as yet unidentified regulatory or stabilizing elements in untranslated regions of the H gene. Interestingly, H gwt homozygous cells expressed higher levels of H protein, perhaps unravelling gene-by-environment interactions.  相似文献   
3.
Colonic crypts are stereotypical structures with distinct stem cell, proliferating, and differentiating compartments. Colorectal cancers derive from colonic crypt epithelia but, in contrast, form morphologically disarrayed glands. In this study, we investigated to which extent colorectal cancers phenocopy colonic crypt architecture and thus preserve structural organization of the normal intestinal epithelium. A subset of colon cancers showed crypt-like compartments with high WNT activity and nuclear β-Catenin at the leading tumor edge, adjacent proliferation, and enhanced Cytokeratin 20 expression in most differentiated tumor epithelia of the tumor center. This architecture strongly depended on growth conditions, and was fully reproducible in mouse xenografts of cultured and primary colon cancer cells. Full crypt-like organization was associated with low tumor grade and was an independent prognostic marker of better survival in a collection of 221 colorectal cancers. Our findings suggest that full activation of preserved intestinal morphogenetic programs in colon cancer requires in vivo growth environments. Furthermore, crypt-like architecture was linked with less aggressive tumor biology, and may be useful to improve current colon cancer grading schemes.  相似文献   
4.
5.
Gobiid fishes possess a distinctive ventral sucker, formed from fusion of the pelvic fins. This sucker is used to adhere to a wide range of substrates including, in some species, the vertical cliffs of waterfalls that are climbed during upstream migrations. Previous studies of waterfall‐climbing goby species have found that pressure differentials and adhesive forces generated by the sucker increase with positive allometry as fish grow in size, despite isometry or negative allometry of sucker area. To produce such scaling patterns for pressure differential and adhesive force, waterfall‐climbing gobies might exhibit allometry for other muscular or skeletal components of the pelvic sucker that contribute to its adhesive function. In this study, we used anatomical dissections and modeling to evaluate the potential for allometric growth in the cross‐sectional area, effective mechanical advantage (EMA), and force generating capacity of major protractor and retractor muscles of the pelvic sucker (m. protractor ischii and m. retractor ischii) that help to expand the sealed volume of the sucker to produce pressure differentials and adhesive force. We compared patterns for three Hawaiian gobiid species: a nonclimber (Stenogobius hawaiiensis), an ontogenetically limited climber (Awaous guamensis), and a proficient climber (Sicyopterus stimpsoni). Scaling patterns were relatively similar for all three species, typically exhibiting isometric or negatively allometric scaling for the muscles and lever systems examined. Although these scaling patterns do not help to explain the positive allometry of pressure differentials and adhesive force as climbing gobies grow, the best climber among the species we compared, S. stimpsoni, does exhibit the highest calculated estimates of EMA, muscular input force, and output force for pelvic sucker retraction at any body size, potentially facilitating its adhesive ability. J. Morphol. 2013. © 2013 Wiley Periodicals, Inc.  相似文献   
6.

Background  

Ontology term labels can be ambiguous and have multiple senses. While this is no problem for human annotators, it is a challenge to automated methods, which identify ontology terms in text. Classical approaches to word sense disambiguation use co-occurring words or terms. However, most treat ontologies as simple terminologies, without making use of the ontology structure or the semantic similarity between terms. Another useful source of information for disambiguation are metadata. Here, we systematically compare three approaches to word sense disambiguation, which use ontologies and metadata, respectively.  相似文献   
7.
8.
9.

Background

The development of ethologically meaningful test paradigms in young animals is an essential step in the study of the ontogeny of animal personality. Here we explore the possibility to integrate offspring separation (distress) calls into the study of consistent individual differences in behaviour in two species of mammals, the domestic cat (Felis silvestris catus) and the mound-building mouse (Mus spicilegus). Such vocal responses in young mammals are a potentially useful test option as they represent an important element of mother-offspring communication with strong implications for offspring survival. In addition, the neural control of vocalisation is closely associated with emotional state.

Results

We found marked similarities in the pattern of individual responses of the young of both species to separation from their mother and littermates. In the domestic cat as well as in the mound-building mouse, individual differences in the frequency of calls and to a lesser extent in locomotor activity were repeatable across age, indicating the existence of personality types. Such consistencies across age were also apparent when only considering relative individual differences among litter siblings. In both species, however, individual patterns of vocalisation and locomotor activity were unrelated. This suggests that these two forms of behavioural responses to isolation represent different domains of personality, presumably based on different underlying neurophysiological mechanisms.

Conclusions

Brief separation experiments in young mammals, and particularly the measurement of separation calls, provide a promising approach to study the ontogeny of personality traits. Future long-term studies are needed to investigate the association of these traits with biologically meaningful and potentially repeatable elements of behaviour during later life.
  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号