首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.

Background  

The Notch signaling pathway is fundamental to the regulation of many cell fate decisions in eumetazoans. Not surprisingly, members of this pathway are highly conserved even between vertebrates and invertebrates. There is one notable exception, Hairless, which acts as a general Notch antagonist in Drosophila. Hairless silences Notch target genes by assembling a repressor complex together with Suppressor of Hairless [Su(H)] and the co-repressors Groucho (Gro) and C-terminal binding protein (CtBP). Now with the availability of genomic databases, presumptive Hairless homologues are predicted, however only in insect species. To further our understanding of Hairless structure and function, we have cloned the Hairless gene from Apis mellifera (A.m.H) and characterized its functional conservation in Drosophila.  相似文献   

5.
6.
7.
Dissecting the mechanisms of suppressor of hairless function   总被引:1,自引:0,他引:1  
  相似文献   

8.
Hairless, a major antagonist of the Notch signaling-pathway in Drosophila (Bang and Posakony, 1992; Maier et al., 1992), associates with Suppressor of Hairless [Su(H)], thereby inhibiting trans-activation of Notch target genes (Brou et al., 1994). These molecular interactions could occur either at the step of signal transduction in the cytoplasm or during implementation of the signal within the nucleus. We examined the subcellular distribution of Hairless, showing that it is a low abundant, ubiquitous protein that is cytosolic as well as nuclear. High levels of Hairless cause nuclear retention of Su(H), loss of Hairless reduces the amount of Su(H) in the nucleus.  相似文献   

9.
10.
Drosophila Hairless (H) encodes a negative regulator of Notch signalling. H activity antagonizes Notch (N) signalling during bristle development at the pupal stage. We show here by clonal analysis that H acts by inhibiting signal transduction rather than by promoting signal production, during both selection of microchaete precursors in the notum and vein cell differentiation in the wing. Allele-specific interactions further suggest that H inhibits Notch signal transduction by interacting directly with Suppressor of Hairless. Unexpectedly, this regulatory function of H appears to be essential only during imaginal development. Using a null allele of H that corresponds to a deletion of the H coding sequence, we show that embryos devoid of both maternal and zygotic gene products develop similarly to wild-type embryos. Thus, H activity is not strictly required to regulate N-mediated cell fate choices in the embryo. Received: 7 October 1997 / Accepted: 24 November 1997  相似文献   

11.
12.
13.
Hairless is a member of the Notch signalling pathway, where it acts as antagonist by binding to Suppressor of Hairless [Su(H)], thereby inhibiting Notch target gene activation. The pathway and its members are highly conserved in metazoans from worms to humans. However, a Hairless orthologue from another species has not yet been identified. The identification of Hairless in largely diverged species by cross-hybridization has failed so far probably due to a low degree of conservation. Therefore, we turned to D. hydei where a Hairless mutation has been described before. The D. hydei Hairless orthologue is reasonably well conserved with regard to gene structure and expression. The prospective Hairless protein orthologues share several highly conserved regions which are separated by quite diverged stretches. As to be expected, the largest region of high conservation corresponds to the Su(H) binding domain. This region is also functionally conserved, since this D. hydei protein domain binds very strongly to the D. melanogaster Su(H) protein. The other conserved regions support our earlier structure-function analysis since they nicely correspond to previously defined, functionally important protein domains. Most notably, the very C-terminal domain which is very sensitive to structural alterations, is nearly identical between the two species. In summary, this evolutionary study improves the knowledge on functionally significant domains of the Hairless protein, and may be helpful for the future identification of homologues in other animals, especially in vertebrates. Received: 26 August 1998 / Accepted: 9 November 1998  相似文献   

14.
15.
Primordial germ cells (PGCs) in Xenopus embryo are specified in the endodermal cell mass and migrate dorsally toward the future gonads. The role of the signal mediated by Notch and Suppressor of Hairless [Su(H)] was analyzed on the migrating PGCs at the tailbud stage. X‐Notch‐1 and X‐Delta‐1 are expressed in the migrating PGCs and surrounding endodermal cells, whereas X‐Delta‐2 and X‐Serrate‐1 are expressed preferentially in the PGCs. Suppression and constitutive activation of the Notch/Su(H) signaling in the whole endoderm region or selectively in the PGCs resulted in an increase in ectopic PGCs located in lateral or ventral regions. Knocking down of the Notch ligands by morpholino oligonucleotides revealed that X‐Delta‐2 was indispensable for the correct PGC migration. The ectopic PGCs seemed to have lost their motility in the Notch/Su(H) signal‐manipulated embryos. Our results suggest that a cell‐to‐cell interaction via the Notch/Su(H) pathway has a significant role in the PGC migration by regulating cell motility.  相似文献   

16.
17.
18.
The Notch signaling pathway (NSP) is an important intercellular communication mechanism that regulates embryo development and adult physiological functions. The Hairless (H) protein is a powerful antagonist of the NSP by its interaction with the Suppressor of Hairless (Su[H]) protein, recruiting the corepressors Gro and CtBP. In the present work, we examined the role of several important amino acids in different H protein domains analyzing four mutant lines of Drosophila melanogaster. The mutant alleles were evaluated by single-strand conformational polymorphism (SSCP) analysis and we located mutated regions at different positions along the sequence of the Hairless gene.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号