首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15篇
  免费   0篇
  2010年   1篇
  2007年   1篇
  2006年   2篇
  2005年   1篇
  2000年   1篇
  1999年   2篇
  1997年   1篇
  1996年   1篇
  1993年   1篇
  1989年   2篇
  1972年   1篇
  1967年   1篇
排序方式: 共有15条查询结果,搜索用时 15 毫秒
1.
Purification and characterization of Dolichos lablab lectin   总被引:1,自引:0,他引:1  
Mo  H; Meah  Y; Moore  JG; Goldstein  IJ 《Glycobiology》1999,9(2):173-179
The mannose/glucose-binding Dolichos lablab lectin (designated DLL) has been purified from seeds of Dolichos lablab (hyacinth bean) to electrophoretic homogeneity by affinity chromatography on an ovalbumin- Sepharose 4B column. The purified lectin gave a single symmetric protein peak with an apparent molecular mass of 67 kDa on gel filtration chromatography, and five bands ranging from 10 kDa to 22 kDa upon SDS-PAGE. N-Terminal sequence analysis of these bands revealed subunit heterogeneity due to posttranslational proteolytic truncation at different sites mostly at the carboxyl terminus. The carbohydrate binding properties of the purified lectin were investigated by three different approaches: hemagglutination inhibition assay, quantitative precipitation inhibition assay, and ELISA. On the basis of these studies, it is concluded that the Dolichos lablab lectin has neither an extended carbohydrate combining site, nor a hydrophobic binding site adjacent to it. The carbohydrate combining site of DLL appears to most effectively accommodate a nonreducing terminal alpha-d-mannosyl unit, and to be complementary to the C-3, C-4, and C-6 equatorial hydroxyl groups of alpha-d-mannopyranosyl and alpha-d-glucopyranosyl residues. DLL strongly precipitates murine IgM but not IgG, and the recent finding that this lectin interacts specifically with NIH 3T3 fibroblasts transfected with the Flt3 tyrosine kinase receptor and preserves human cord blood stem cells and progenitors in a quiescent state for prolonged periods in culture, make this lectin a valuable tool in biomedical research.   相似文献   
2.
3.
不同胁迫预处理提高水稻幼苗抗寒性期间蛋白质的变化   总被引:13,自引:0,他引:13  
水稻(Oryza sativa L.)幼苗经盐、热激和冷三种不同胁迫预处理均提高了幼苗的抗寒性。与未预处理苗相比,在处理后、低温伤害后和常温下恢复2d的三个时期,不同胁迫预处理苗的可溶性和热不稳定蛋白含量变化趋势甚为相似,但热稳定蛋白含量变化则各有异同。SDS-PAGE图谱分析显示,不同胁迫预处理提高水稻幼苗抗寒性时,其可溶性蛋白、热稳定和热不稳定蛋白组成变化亦各有异同。除诱导出共有的新多肽外,还各自诱导出特有的新多肽。结果表明,植物对不同胁迫的交叉适应存在一定的共同机理,但亦可看出植物对同一种环境胁迫似乎不是以同一的机理去适应。  相似文献   
4.
The responsiveness of granulosa cells to FSH (cAMP) changes as these cells switch from the proliferative stage in growing follicles to the terminally differentiated, nonproliferating stage after LH-induced luteinization. To analyze this transition, two well characterized culture systems were used. 1) Granulosa cells isolated from immature rats were cultured in serum-free medium, a system that permits analysis of dynamic, short-term responses to hormones/cAMP. 2) Granulosa cells from preovulatory (PO) follicles that have been exposed in vivo to surge concentrations of hCG (PO/ hCG) were cultured in medium containing 1% FBS, a system that permits analyses of cells that have undergo irreversible, long-term changes associated with luteinization. To analyze the biochemical basis for the switch in cAMP responsiveness, the localization of A-kinase pathway components was related to the expression of two cAMP target genes, aromatase (CYP19) and serum-and glucocorticoid-induced kinase (Sgk). Components of the A-kinase pathway were analyzed by Western blotting and indirect immunofluorescence using specific antibodies to the C subunit, RIIalpha/beta subunits, CREB (cAMP-regulatory element binding protein), phospho-CREB, CBP (CREB binding protein), and Sgk. Cellular levels of C subunit and CREB were similar in all cell types and hormone treatments. CREB and CBP were nuclear; RIIalpha/beta was restricted to a cytoplasmic basket-like structure. Addition of FSH to immature granulosa cells caused rapid nuclear import of C subunit within 1 h. Nuclear C subunit decreased by 6 h after FSH but could be rapidly reimported to the nucleus by the addition of forskolin at 6, 24, or 48 h. Nuclear C subunit was associated with the rapid but transient increases in phospho-CREB. FSH induced Sgk in a biphasic manner in which the protein was nuclear at 1 h and cytoplasmic at 48 h. Aromatase mRNA was only expressed at 24-48 h after FSH, a pattern that was not altered by phosphodiesterases or phosphatases. In the luteinized (PO/hCG) granulosa cells, immunoreactive C subunit was localized in a punctate pattern in the nucleus as well as to a cytoplasmic basket-like structure, a distribution pattern not altered by forskolin. Aromatase, Sgk, and phospho-CREB were expressed at elevated levels in a non-forskolin-responsive manner. Most notable, both phospho-CREB and Sgk were preferentially localized in a punctate pattern within the cytoplasm and not altered by forskolin. Collectively, these data indicate that when granulosa cells differentiate to luteal cells the subcellular localization (nuclear vs. cytoplasmic) of A-kinase pathway components changes markedly. Thus, either the mechanisms of nuclear import and export or the presence of distinct docking sites (and functions ?) dictate where A-kinase, phospho-CREB and Sgk are localized in granulosa cells compared with the terminally differentiated luteal cells.  相似文献   
5.
6.
The molecular bridges that link the LH surge with functional changes in cumulus cells that possess few LH receptors are being unraveled. Herein we document that epidermal growth factor (EGF)-like factors amphiregulin (Areg), epiregulin (Ereg), and betacellulin (Btc) are induced in cumulus oocyte complexes (COCs) by autocrine and paracrine mechanisms that involve the actions of prostaglandins (PGs) and progesterone receptor (PGR). Areg and Ereg mRNA and protein levels were reduced significantly in COCs and ovaries collected from prostaglandin synthase 2 (Ptgs2) null mice and Pgr null (PRKO) mice at 4 h and 8 h after human chorionic gonadotropin, respectively. In cultured COCs, FSH/forskolin induced Areg mRNA within 0.5 h that peaked at 4 h, a process blocked by inhibitors of p38MAPK (SB203580), MAPK kinase (MEK) 1 (PD98059), and PTGS2 (NS398) but not protein kinase A (PKA) (KT5720). Conversely, AREG but not FSH induced Ptsg2 mRNA at 0.5 h with peak expression of Ptgs2 and Areg mRNAs at 4 h, processes blocked by the EGF receptor tyrosine kinase inhibitor AG1478 (AG), PD98059, and NS398. PGE2 reversed the inhibitory effects of AG on AREG-induced expression of Areg but not Ptgs2, placing Ptgs2 downstream of EGF-R signaling. Phorbol 12-myristate 13-acetate (PMA) and adenovirally expressed PGRA synergistically induced Areg mRNA in granulosa cells. In COCs, AREG not only induced genes that impact matrix formation but also genes involved in steroidogenesis (StAR, Cyp11a1) and immune cell-like functions (Pdcd1, Runx1, Cd52). Collectively, FSH-mediated induction of Areg mRNA via p38MAPK precedes AREG induction of Ptgs2 mRNA via ERK1/2. PGs acting via PTGER2 in cumulus cells provide a secondary, autocrine pathway to regulate expression of Areg in COCs showing critical functional links between G protein-coupled receptor and growth factor receptor pathways in ovulating follicles.  相似文献   
7.
Ovulation is a complex process initiated by the preovulatory LH surge, characterized by cumulus oocyte complex (COC) expansion and completed by the release of a mature oocyte. Although many ovarian genes that impact ovulation have been identified, we hypothesized that genes selectively expressed in COCs would be overlooked by approaches using whole ovary or granulosa cell samples. RNA isolated from COCs collected from preovulatory follicles of equine chorionic gonadotropin (CG) primed mice and at selected times after human CG treatment was subjected to microarray analyses and results confirmed by RT-PCR analyses, Western blotting, and immunofluorescent studies. A remarkable number of genes were up-regulated in COCs including Areg, Ereg, and Btc. Several genes selectively expressed in cumulus cells compared with granulosa cells were related to neuronal (Mbp, Tnc, Nts) or immune (Alcam, Pdcd1, Cd34, Cd52, and Cxcr4) cell function. In addition to Sfrp2, other members of the Wnt/Fzd family (Sfrp4, Fdz1 and Fdz2) were expressed in COCs. Thus, there is a cumulus cell-specific, terminal differentiation process. Furthermore, immunofluorescent analyses documented that cumulus cells are highly mitotic for 4-8 h after human CG and then cease dividing in association with reduced levels of Ccnd2 mRNA. Other down-regulated genes included: Cyp19a1, Fshr, Inhb, and the oocyte factors Zp1-3 and Gja4. In summary, the vast number of matrix, neuronal, and especially immune cell-related genes identified by the gene- profiling data of COCs constitutes strong and novel evidence that cumulus cells possess a repertoire of immune functions that could be far greater than simply mediating an inflammatory-like response.  相似文献   
8.
Hexose-6-phosphate dehydrogenase (H6PDH-A2; beta-D-glucose:NAD(P)+ oxido-reductase; E.C. 1.1.1.47) of the teleost Fundulus heteroclitus (L.) shows clinal allelic variation along the east coast of North America. Three of the major allelic isozymes have been purified and compared for native molecular weight, subunit molecular weight, isoelectric point, thermal stability, and steady-state kinetic properties (pH 8.0 and 25 degrees C). Significant differences were found among the allelic isozymes for isoelectric point, thermal stability, and some kinetic parameters. The predominant allelic isozyme in northern populations (H6PDH-AcAc) was found to be more sensitive to heat denaturation than were the predominant homozygous allelic isozymes isolated from southern populations (H6PDH-AaAa and H6PDH-AbAb). The H6PDH-AcAc allelic isozyme had both a significantly greater Km for glucose-6-phosphate than did either of the southern phenotypes and a significantly greater Km for NADP+ and Ki of NAD+ than did one of the southern phenotypes (H6PDH-AaAa). While the allelic isozymes are functionally nonequivalent, it is not yet known whether these differences are reflected at higher levels of biological organization.   相似文献   
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号