首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
Glutamate receptor activation of mitogen-activated protein (MAP) kinase signalling cascades has been implicated in diverse neuronal functions such as synaptic plasticity, development and excitotoxicity. We have previously shown that Ca2+-influx through NMDA receptors in cultured striatal neurones mediates the phosphorylation of extracellular signal-regulated kinase 1/2 (ERK1/2) and Akt/protein kinase B (PKB) through a phosphatidylinositol 3-kinase (PI 3-kinase)-dependent pathway. Exposing neurones to the Src family tyrosine kinase inhibitor PP2, but not the inactive analogue PP3, inhibited NMDA receptor-induced phosphorylation of ERK1/2 and Akt/PKB in a concentration-dependent manner, and reduced cAMP response element-binding protein (CREB) phosphorylation. To establish a link between Src family tyrosine kinase-mediated phosphorylation and PI 3-kinase signalling, affinity precipitation experiments were performed with the SH2 domains of the PI 3-kinase regulatory subunit p85. This revealed a Src-dependent phosphorylation of a focal adhesion kinase (FAK)-p85 complex on glutamate stimulation. Demonstrating that PI3-kinase is not ubiquitously involved in NMDA receptor signal transduction, the PI 3-kinase inhibitors wortmannin and LY294002 did not prevent NMDA receptor Ca2+-dependent phosphorylation of c-Jun N-terminal kinase 1/2 (JNK1/2). Further, inhibiting Src family kinases increased NMDA receptor-dependent JNK1/2 phosphorylation, suggesting that Src family kinase-dependent cascades may physiologically limit signalling to JNK. These results demonstrate that Src family tyrosine kinases and PI3-kinase are pivotal regulators of NMDA receptor signalling to ERK/Akt and JNK in striatal neurones.  相似文献   

6.
We have previously reported an aberrant accumulation of activated protein kinase B (PKB), glycogen synthase kinase (GSK)-3beta, extracellular signal-regulated kinase (ERK1/2), c-Jun N-terminal kinase (JNK), p38 and p70 S6 kinase (p70S6K) in neurons bearing neurofibrillary tangles (NFTs) in Alzheimer's disease (AD). However, the mechanism by which these tau candidate kinases are involved in the regulation of p70S6K and GSK-3beta phosphorylation is unknown. In the current study, 100 microM zinc sulfate was used, and influences of various components of phosphatidylinositol 3-kinase (PI3K) and mitogen-activated protein kinase (MAPK) pathways on p70S6K and GSK-3beta phosphorylation have been investigated in serum-deprived SH-SY5Y neuroblastoma cells. We found that zinc could induce an increase of phosphorylated (p) p70S6K, p-PKB, p-GSK-3beta, p-ERK1/2, p-JNK and p-p38, especially in long-term treatment (4-8 h). Treatment with different inhibitors including rapamycin, wortmannin, LY294002, and U0126, and their combinations, indicated that phosphorylation of p70S6K and GSK-3beta is regulated by rapamycin-dependent, PI3K and MAPK pathways. Furthermore, phosphorylation of p70S6K and GSK-3beta affected levels of tau unphosphorylated at the Tau-1 site and phosphorylated at the PHF-1 site, and p70S6K phosphorylation affected the total tau level. Thus, 100 microM zinc might activate PKB, GSK-3beta, ERK1/2, JNK, p38 and p70S6K, that are consequently involved in tau changes in SH-SY5Y cells.  相似文献   

7.
Aquaporin8 (AQP8) is a transmembrane water channel that is found mainly in hepatocytes. The direct involvement of AQP8 in high glucose condition has not been established. Therefore, this study examined the effects of high glucose on AQP8 and its related signal pathways in primary cultured chicken hepatocytes. High glucose increased the movement of AQP8 from the intracellular membrane to plasma membrane in a 30 mM glucose concentration and in a time- (> or =10 min) dependent manner. On the other hand, 30 mM mannitol did not affect the translocation of AQP8, which suggested the absence of osmotic effect. Thirty millimolar glucose increased intracellular cyclic adenosine 3, 5-monophosphate (cAMP) level. Moreover, high glucose level induced Akt phosphorylation, protein kinase C (PKC) activation, p44/42 mitogen-activated protein kinases (MAPKs), p38 MAPK, and c-jun NH2-terminal kinase (JNK) phosphorylation. On the other hand, inhibition of each pathway by SQ 22536 (adenylate cyclase inhibitor), LY 294002 (PI3-K phosphatidylinositol 3-kinase inhibitor), Akt inhibitor, staurosporine (PKC inhibitor), PD 98059 (MEK inhibitor), SB 203580 (p38 MAPK inhibitor), or SP 600125 (JNK inhibitor) blocked 30 mM glucose-induced AQP8 translocation, respectively. In addition, inhibition of microtubule movement with nocodazole blocked high glucose-induced AQP8 translocation. High glucose level also increased the level of kinesin light chain and dynein protein expression. In conclusion, high glucose level stimulates AQP8 via cAMP, PI3-K/Akt, PKC, and MAPKs pathways in primary cultured chicken hepatocytes.  相似文献   

8.
9.
Reactive oxygen species (ROS) are important for intracellular signaling mechanisms regulating many cellular processes. Manganese superoxide dismutase (MnSOD) may regulate cell growth by changing the level of intracellular ROS. In our study, we investigated the effect of ROS on 7721 human hepatoma cell proliferation. Treatment with H2O2 (1-10 microM) or transfection with antisense MnSOD cDNA constructs significantly increased the cell proliferation. Recently, the mitogen-activated protein kinases (MAPK) and the protein kinase B (PKB) were proposed to be involved in cell growth. Accordingly, we assessed the ability of ROS to activate MAPK and PKB. PKB and extracellular signal-regulated kinase (ERK) were both rapidly and transiently activated by 10 microM H2O2, but the activities of p38 MAPK and JNK were not changed. ROS-induced PKB activation was abrogated by the phosphatidylinositol 3-kinase (PI3-K) inhibitor LY294002, suggesting that PI3-K is an upstream mediator of PKB activation in 7721 cells. Transfection with sense PKB cDNA promoted c-fos and c-jun expression in 7721 cells, suggesting that ROS may regulate c-fos and c-jun expression via the PKB pathway. Furthermore we found that exogenous H2O2 could stimulate the proliferation of PKB-AS7721 cells transfected with antisense PKB cDNA, which was partly dependent on JNK activation, suggesting that H2O2 stimulated hepatoma cell proliferation via cross-talk between the PI3-K/PKB and the JNK signaling pathways. However, insulin could stimulate 7721 cell proliferation, which is independent of cross-talk between PI3-K/PKB and JNK pathways. In addition, H2O2 did not induce the cross-talk between the PI3-K/PKB and the JNK pathways in normal liver cells. Taken together, we found that ROS regulate hepatoma cell growth via specific signaling pathways (cross-talk between PI3-K/PKB and JNK pathway) which may provide a novel clue to elucidate the mechanism of hepatoma carcinogenesis.  相似文献   

10.
Oxidized low-density lipoprotein (OxLDL) is a risk factor in atherosclerosis and stimulates multiple signaling pathways, including activation of phosphatidylinositol 3-kinase (PI3-K)/Akt and p42/p44 mitogen-activated protein kinase (MAPK), which are involved in mitogenesis of vascular smooth muscle cells (VSMCs). We therefore investigated the relationship between PI3-K/Akt and p42/p44 MAPK activation and cell proliferation induced by OxLDL. OxLDL stimulated Akt phosphorylation in a time- and concentration-dependent manner, as determined by Western blot analysis. Phosphorylation of Akt stimulated by OxLDL and epidermal growth factor (EGF) was attenuated by inhibitors of PI3-K (wortmannin and LY294002) and intracellular Ca2+ chelator (BAPTA/AM) plus EDTA. Pretreatment of VSMCs with pertussis toxin, cholera toxin, and forskolin for 24 h also attenuated the OxLDL-stimulated Akt phosphorylation. In addition, pretreatment of VSMCs with wortmannin or LY294002 inhibited OxLDL-stimulated p42/p44 MAPK phosphorylation and [3H]thymidine incorporation. Furthermore, treatment with U0126, an inhibitor of MAPK kinase (MEK)1/2, attenuated the p42/p44 MAPK phosphorylation, but had no effect on Akt activation in response to OxLDL and EGF. Overexpression of p85-DN or Akt-DN mutants attenuated MEK1/2 and p42/p44 MAPK phosphorylation stimulated by OxLDL and EGF. These results suggest that the mitogenic effect of OxLDL is, at least in part, mediated through activation of PI3-K/Akt/MEK/MAPK pathway in VSMCs.  相似文献   

11.
In our previous study, bradykinin (BK) exerts its mitogenic effect through Ras/Raf/MEK/MAPK pathway in vascular smooth muscle cells (VSMCs). In addition to this pathway, the non-receptor tyrosine kinases (Src), EGF receptor (EGFR), and phosphatidylinositol 3-kinase (PI3-K) have been implicated in linking a variety of G-protein coupled receptors to MAPK cascades. Here, we investigated whether these different mechanisms participating in BK-induced activation of p42/p44 MAPK and cell proliferation in VSMCs. We initially observed that BK- and EGF-dependent activation of Src, EGFR, Akt, and p42/p44 MAPK and [3H]thymidine incorporation were mediated by Src and EGFR, because the Src inhibitor PP1 and EGFR kinase inhibitor AG1478 abrogated BK- and EGF-dependent effects. Inhibition of PI3-K by LY294002 attenuated BK-induced Akt and p42/p44 MAPK phosphorylation and [3H]thymidine incorporation, but had no effect on EGFR phosphorylation, suggesting that EGFR may be an upstream component of PI3-K/Akt and MAPK in these responses. This hypothesis was supported by the tranfection with dominant negative plasmids of p85 and Akt which significantly attenuated BK-induced Akt and p42/p44 MAPK phosphorylation. Pretreatment with U0126 (a MEK1/2 inhibitor) attenuated the p42/p44 MAPK phosphorylation and [3H]thymidine incorporation stimulated by BK, but had no effect on Akt activation. Moreover, BK-induced transactivation of EGFR and cell proliferation was blocked by matrix metalloproteinase inhibitor GM6001. These results suggest that, in VSMCs, the mechanism of BK-stimulated activation of p42/p44 MAPK and cell proliferation was mediated, at least in part, through activation of Src family kinases, EGFR transactivation, and PI3-K/Akt.  相似文献   

12.
In order to study the role of phosphatidylinositol-3-kinase (PI3K), PKB, FRAP, S6 kinase, and MAP kinase in insulin-stimulated glycogen synthesis, we used a specific inhibitor of PI3K, LY294002, the immunosuppressant inhibitor of FRAP, rapamycin, and the inhibitor of MAPK kinase (MEK)/MAPK, PD98059, in rat HTC hepatoma cells overexpressing human insulin receptors. The PI3K inhibitor LY294002 completely blocks insulin-stimulated glycogen synthesis by inhibiting glycogen synthase, PKB (Akt-1), and FRAP (RAFT) autophosphorylation, as well as p70 S6 kinase activation, whereas insulin receptor substrates tyrosine phosphorylation and MEK activity were not affected. However, rapamycin only partially blocks insulin-stimulated glycogen synthesis by partial inhibition of glycogen synthase, whereas it completely blocks S6 kinase activation and FRAP autophosphorylation, but does not affect either PKB autophosphorylation, MEK activity, or insulin receptor tyrosine phosphorylation. Insulin-stimulated glycogen synthesis and glycogen synthase were not affected by the MEK/MAPK inhibitor PD98059. These data suggest that the PI3K, and not the MAPK pathway plays an important role in the insulin-stimulated glycogen synthesis in the hepatocyte, partly mediated by FRAP and S6 kinase activation. However, the inhibition of FRAP and S6 kinase activation is not sufficient to block insulin-stimulated glycogen synthesis, suggesting an important role of a branching pathway upstream of S6 kinase and downstream of PI3K, which is probably mediated by PKB in the signaling of the insulin receptor in hepatoma HTC cells.  相似文献   

13.
Insulin-like growth factor I (IGF-I) is a well-established mitogen in human breast cancer cells. We show here that human breast cancer MCF-7 cells, which were prevented from attaching to the substratum and were floating in medium, responded to IGF-I and initiated DNA synthesis. The addition of IGF-I to floating cells induced activation of protein kinase B (PKB)/Akt, as to cells attached to the substratum. In addition, mitogen-activated protein kinase (MAPK)/extracellular response kinase (ERK) and its upstream kinases, ERK kinase (MEK) and Raf-1, were activated by IGF-I in floating cells. While the IGF-I-induced activation of PKB/Akt was inhibited by PI3-K inhibitor LY294002 but not by MEK inhibitor PD98059, the activation of both MEK and ERK by IGF-I was inhibited by both. These findings suggest that the IGF-I signal that leads to stimulation of DNA synthesis of MCF-7 cells is transduced to ERK through PI3-K, only when they are anchorage-deficient.  相似文献   

14.
15.
16.
The molecular mechanisms behind phenotypic modulation of smooth muscle cells (SMCs) remain unclear. In our recent paper, we reported the establishment of novel culture system of gizzard SMCs (Hayashi, K., H. Saga, Y. Chimori, K. Kimura, Y. Yamanaka, and K. Sobue. 1998. J. Biol. Chem. 273: 28860-28867), in which insulin-like growth factor-I (IGF-I) was the most potent for maintaining the differentiated SMC phenotype, and IGF-I triggered the phosphoinositide 3-kinase (PI3-K) and protein kinase B (PKB(Akt)) pathway. Here, we investigated the signaling pathways involved in de-differentiation of gizzard SMCs induced by PDGF-BB, bFGF, and EGF. In contrast to the IGF-I-triggered pathway, PDGF-BB, bFGF, and EGF coordinately activated ERK and p38MAPK pathways. Further, the forced expression of active forms of MEK1 and MKK6, which are the upstream kinases of ERK and p38MAPK, respectively, induced de-differentiation even when SMCs were stimulated with IGF-I. Among three growth factors, PDGF-BB only triggered the PI3-K/PKB(Akt) pathway in addition to the ERK and p38MAPK pathways. When the ERK and p38MAPK pathways were simultaneously blocked by their specific inhibitors or an active form of either PI3-K or PKB(Akt) was transfected, PDGF-BB in turn initiated to maintain the differentiated SMC phenotype. We applied these findings to vascular SMCs, and demonstrated the possibility that the same signaling pathways might be involved in regulating the vascular SMC phenotype. These results suggest that changes in the balance between the PI3-K/PKB(Akt) pathway and the ERK and p38MAPK pathways would determine phenotypes of visceral and vascular SMCs. We further reported that SMCs cotransfected with active forms of MEK1 and MKK6 secreted a nondialyzable, heat-labile protein factor(s) which induced de-differentiation of surrounding normal SMCs.  相似文献   

17.
8‐chloro‐cyclic AMP (8‐Cl‐cAMP), which induces differentiation, growth inhibition, and apoptosis in various cancer cells, has been investigated as a putative anti‐cancer drug. However, the exact mechanism of 8‐Cl‐cAMP functioning in cancer cells is not fully understood. Akt/protein kinase B (PKB) genes (Akt1, Akt2, and Akt3) encode enzymes belonging to the serine/threonine‐specific protein kinase family. It has been suggested that Akt/PKB enhances cell survival by inhibiting apoptosis. Recently, we showed that 8‐Cl‐cAMP and 5‐aminoimidazole‐4‐carboxamide ribonucleoside (AICAR) inhibited cancer cell growth through the activation of AMPK and p38 MAPK. Therefore, we anticipated that the phosphorylation of Akt/PKB would be decreased upon treatment with 8‐Cl‐cAMP. However, treatment with 8‐Cl‐cAMP and AICAR induced the phosphorylation of Akt/PKB, which was inhibited by ABT702 (an adenosine kinase inhibitor) and NBTI (an adenosine transporter inhibitor). Furthermore, whereas Compound C (an AMPK inhibitor), AMPK‐DN (AMPK‐dominant negative) mutant, and SB203580 (a p38 MAPK inhibitor) did not block the 8‐Cl‐cAMP‐induced phosphorylation of Akt/PKB, TCN (an Akt1/2/3 specific inhibitor) and an Akt2/PKBβ‐targeted siRNA inhibited the 8‐Cl‐cAMP‐ and AICAR‐mediated phosphorylation of AMPK and p38 MAPK. TCN also reversed the growth inhibition mediated by 8‐Cl‐cAMP and AICAR. Moreover, an Akt1/PKBα‐targeted siRNA did not reduce the phosphorylation of AMPK and p38 MAPK after treatment with 8‐Cl‐cAMP. These results suggest that Akt2/PKBβ activation promotes the phosphorylation of AMPK and p38 MAPK during the 8‐Cl‐cAMP‐ and AICAR‐induced growth inhibition. J. Cell. Physiol. 228: 890–902, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

18.
19.
Tryptase is involved in proteinase-activated receptor-2 (PAR-2) mediated up-regulation of IL-8 expression. The present report showed the effects of tryptase on gene expression and activation, including up-regulation IL-8 expression. The expression of mRNA for NF-kappaB first increased at 1 h after tryptase-treatment (1 ng/ml) and reached the plateau after 4 h. The NF-kappaB mRNA increased by 3-fold (n = 3, P < 0.05), AP-1 by 2-fold (n = 3, P < 0.05), and PKB by 10-fold (n = 3, P < 0.05). However, tryptase-treatment did not affect the expression of JNK and p38 MAPK when compared with control cells at mRNA level. Furthermore, in addition to increasing phosphorylation of p38 MAPK, tryptase-treatment also increased phosphorylation of PKB by 2-fold at 15 min following the treatment. The up-regulation and phosphorylation of PKB by tryptase could be abolished by either phosphoinositol-3-kinase (PI3K) inhibitor (LY294002) at 10 microM or antisense PKB cDNA transfection. The up-regulation of NF-kappaB expression could be inhibited by LY294002 and antisense PKB cDNA. These results indicate that tryptase can activate PI3K-PKB pathway and enhance IL-8 expression.  相似文献   

20.
In this study, we investigated the effect of tea polyphenols, (-)-epigallocatechin-3-gallate or theaflavins, on UVB-induced phosphatidylinositol 3-kinase (PI3K) activation in mouse epidermal JB6 Cl 41 cells. Pretreatment of cells with these polyphenols inhibited UVB-induced PI3K activation. Furthermore, UVB-induced activation of Akt and ribosomal p70 S6 kinase (p70 S6-K), PI3K downstream effectors, were also attenuated by the polyphenols. In addition to LY294002, a PI3K inhibitor, pretreatment with a specific mitogen-activated protein/extracellular signal-regulated protein kinases (Erks) kinase 1 inhibitor, U0126, or a specific p38 kinase inhibitor, SB202190, blocked UVB-induced activation of both Akt and p70 S6-K. Pretreatment with LY294002 restrained UVB-induced phosphorylation of Erks, suggesting that in UVB signaling, the Erk pathway is mediated by PI3K. Moreover, pretreatment with rapamycin, an inhibitor of p70 S6-K, inhibited UVB-induced activation of p70 S6-K, but UVB-induced activation of Akt did not change. Interestingly, UVB-induced p70 S6-K activation was directly blocked by the addition of (-)-epigallocatechin-3-gallate or theaflavins, whereas these polyphenols showed only a weak inhibition on UVB-induced Akt activation. Because PI3K is an important factor in carcinogenesis, the inhibitory effect of these polyphenols on activation of PI3K and its downstream effects may further explain the anti-tumor promotion action of these tea constituents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号