首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   59篇
  免费   4篇
  2020年   1篇
  2018年   1篇
  2016年   1篇
  2015年   2篇
  2014年   7篇
  2013年   8篇
  2012年   5篇
  2011年   3篇
  2010年   1篇
  2009年   1篇
  2008年   2篇
  2007年   2篇
  2006年   4篇
  2005年   2篇
  2004年   1篇
  2003年   2篇
  2002年   1篇
  2001年   1篇
  2000年   1篇
  1999年   2篇
  1998年   5篇
  1996年   2篇
  1993年   1篇
  1992年   1篇
  1990年   1篇
  1986年   1篇
  1984年   1篇
  1982年   1篇
  1977年   1篇
  1970年   1篇
排序方式: 共有63条查询结果,搜索用时 187 毫秒
1.
Immunoglobulins are encoded by a large multigene system that undergoes somatic rearrangement and additional genetic change during the development of immunoglobulin-producing cells. Inducible antibody and antibody-like responses are found in all vertebrates. However, immunoglobulin possessing disulfide-bonded heavy and light chains and domain-type organization has been described only in representatives of the jawed vertebrates. High degrees of nucleotide and predicted amino acid sequence identity are evident when the segmental elements that constitute the immunoglobulin gene loci in phylogenetically divergent vertebrates are compared. However, the organization of gene loci and the manner in which the independent elements recombine (and diversify) vary markedly among different taxa. One striking pattern of gene organization is the "cluster type" that appears to be restricted to the chondrichthyes (cartilaginous fishes) and limits segmental rearrangement to closely linked elements. This type of gene organization is associated with both heavy- and light-chain gene loci. In some cases, the clusters are "joined" or "partially joined" in the germ line, in effect predetermining or partially predetermining, respectively, the encoded specificities (the assumption being that these are expressed) of the individual loci. By relating the sequences of transcribed gene products to their respective germ-line genes, it is evident that, in some cases, joined-type genes are expressed. This raises a question about the existence and/or nature of allelic exclusion in these species. The extensive variation in gene organization found throughout the vertebrate species may relate directly to the role of intersegmental (V<==>D<==>J) distances in the commitment of the individual antibody-producing cell to a particular genetic specificity. Thus, the evolution of this locus, perhaps more so than that of others, may reflect the interrelationships between genetic organization and function.   相似文献   
2.
The p53 transactivation domain (p53TAD) is an intrinsically disordered protein (IDP) domain that undergoes coupled folding and binding when interacting with partner proteins like the E3 ligase, MDM2, and the 70 kDa subunit of replication protein A, RPA70. The secondary structure and dynamics of six closely related mammalian homologues of p53TAD were investigated using nuclear magnetic resonance (NMR) spectroscopy. Differences in both transient secondary structure and backbone dynamics were observed for the homologues. Many of these differences were localized to the binding sites for MDM2 and RPA70. The amount of transient helical secondary structure observed for the MDM2 binding site was lower for the dog and mouse homologues, compared with human, and the amount of transient helical secondary structure observed for the RPA70 binding site was higher for guinea pig and rabbit, compared with human. Differences in the amount of transient helical secondary structure observed for the MDM2 binding site were directly related to amino acid substitutions occurring on the solvent exposed side of the amphipathic helix that forms during the p53TAD/MDM2 interaction. Differences in the amount of transient helical secondary structure were not as easily explained for the RPA70 binding site because of its extensive sequence divergence. Clustering analysis shows that the divergence in the transient secondary structure of the p53TAD homologues exceeds the amino acid sequence divergence. In contrast, strong correlations were observed between the backbone dynamics of the homologues and the sequence identity matrix, suggesting that the dynamic behavior of IDPs is a conserved evolutionary feature. Proteins 2013; 81:1686–1698. © 2013 Wiley Periodicals, Inc.  相似文献   
3.
KJ Wynne  GW Swain  RB Fox  S Bullock  J Uilk 《Biofouling》2013,29(2-4):277-288

Two silicone coatings have been evaluated for barnacle adhesion. One coating is an unfilled hydrosilation cured polydimethylsiloxane (PDMS) network, while the other is a room temperature vulcanized (RTV), filled, ethoxysiloxane cured PDMS elastomer, RTV11?. The adhesion strength of one species of barnacle, Balanus eburneus, to the hydrosilation coatings is in the range of 0.37–0.60 kg cm‐2 while the corresponding range for RTV11 is 0.64–0.90 kg cm‐2. The easier release of B. eburneus from the hydrosilation cured network compared to RTV11 is discussed in relationship to differences in bulk and surface properties. Preliminary results suggest bulk modulus may be the most important parameter in determining barnacle adhesion strength. In light or mechanical property analysis, a re‐evaluation of surface properties and chemical stability is presented.  相似文献   
4.
Abstract

The transient secondary structure and dynamics of an intrinsically unstructured linker domain from the 70 kDa subunit of human replication protein A was investigated using solution state NMR. Stable secondary structure, inferred from large secondary chemical shifts, was observed for a segment of the intrinsically unstructured linker domain when it is attached to an N-terminal protein interaction domain. Results from NMR relaxation experiments showed the rotational diffusion for this segment of the intrinsically unstructured linker domain to be correlated with the N-terminal protein interaction domain. When the N-terminal domain is removed, the stable secondary structure is lost and faster rotational diffusion is observed. The large secondary chemical shifts were used to calculate phi and psidihedral angles and these dihedral angles were used to build a backbone structural model. Restrained molecular dynamics were performed on this new structure using the chemical shift based dihedral angles and a single NOE distance as restraints. In the resulting family of structures a large, solvent exposed loop was observed for the segment of the intrinsically unstructured linker domain that had large secondary chemical shifts.  相似文献   
5.
6.
7.
DNA interstrand cross‐links (ICLs) are repaired in S phase by a complex, multistep mechanism involving translesion DNA polymerases. After replication forks collide with an ICL, the leading strand approaches to within one nucleotide of the ICL (“approach”), a nucleotide is inserted across from the unhooked lesion (“insertion”), and the leading strand is extended beyond the lesion (“extension”). How DNA polymerases bypass the ICL is incompletely understood. Here, we use repair of a site‐specific ICL in Xenopus egg extracts to study the mechanism of lesion bypass. Deep sequencing of ICL repair products showed that the approach and extension steps are largely error‐free. However, a short mutagenic tract is introduced in the vicinity of the lesion, with a maximum mutation frequency of ~1%. Our data further suggest that approach is performed by a replicative polymerase, while extension involves a complex of Rev1 and DNA polymerase ζ. Rev1–pol ζ recruitment requires the Fanconi anemia core complex but not FancI–FancD2. Our results begin to illuminate how lesion bypass is integrated with chromosomal DNA replication to limit ICL repair‐associated mutagenesis.  相似文献   
8.
The transient secondary structure and dynamics of an intrinsically unstructured linker domain from the 70 kDa subunit of human replication protein A was investigated using solution state NMR. Stable secondary structure, inferred from large secondary chemical shifts, was observed for a segment of the intrinsically unstructured linker domain when it is attached to an N-terminal protein interaction domain. Results from NMR relaxation experiments showed the rotational diffusion for this segment of the intrinsically unstructured linker domain to be correlated with the N-terminal protein interaction domain. When the N-terminal domain is removed, the stable secondary structure is lost and faster rotational diffusion is observed. The large secondary chemical shifts were used to calculate phi and psi dihedral angles and these dihedral angles were used to build a backbone structural model. Restrained molecular dynamics were performed on this new structure using the chemical shift based dihedral angles and a single NOE distance as restraints. In the resulting family of structures a large, solvent exposed loop was observed for the segment of the intrinsically unstructured linker domain that had large secondary chemical shifts.  相似文献   
9.

Introduction

Inflammation associated with synovial expression of TNFα is a recognised feature of osteoarthritis (OA), although no studies have yet reported beneficial effects of anti-TNFα therapy on clinical manifestations of inflammation in OA.

Methods

We conducted an open-label evaluation of adalimumab over 12 weeks in 20 patients with OA of the knee and evidence of effusion clinically. Inclusion criteria included daily knee pain for the month preceding study enrolment and a summed pain score of 125 to 400 mm visual analogue scale on the Western Ontario and McMaster University Osteoarthritis Index (WOMAC) pain subscale. The primary outcome was the Osteoarthritis Research Society International/Outcome Measures in Rheumatology Clinical Trials (OARSI/OMERACT) response criterion at week 12. Secondary outcomes included the WOMAC pain score 20% and 50% improvement, WOMAC stiffness and function scores, patient and physician global visual analogue scale, as well as target joint swelling.

Results

Treatment was well tolerated and completed by 17 patients with withdrawals unrelated to lack of efficacy or adverse events. By intention to treat, an OARSI/OMERACT response was recorded in 14 (70%) patients. WOMAC pain 20% and 50% responses were recorded in 14 (70%) patients and eight (40%) patients, respectively. Significant improvement was observed in mean WOMAC pain, stiffness, function, physician and patient global, as well as target joint swelling at 12 weeks (P < 0.0001 for all). After treatment discontinuation, 16 patients were available for assessment at 22 weeks and OARSI/OMERACT response compared with baseline was still evident in 10 (50%) patients.

Conclusion

Targeting TNFα may be of therapeutic benefit in OA and requires further evaluation in controlled trials.

Trial registration

ClinicalTrials.gov: NCT00686439.  相似文献   
10.

Introduction

Erosions of the sacroiliac joints (SIJ) on pelvic radiographs of patients with ankylosing spondylitis (AS) are an important feature of the modified New York classification criteria. However, radiographic SIJ erosions are often difficult to identify. Recent studies have shown that erosions can be detected also on magnetic resonance imaging (MRI) of the SIJ early in the disease course before they can be seen on radiography. The goals of this study were to assess the reproducibility of erosion and related features, namely, extended erosion (EE) and backfill (BF) of excavated erosion, in the SIJ using a standardized MRI methodology.

Methods

Four readers independently assessed T1-weighted and short tau inversion recovery sequence (STIR) images of the SIJ from 30 AS patients and 30 controls (15 patients with non-specific back pain and 15 healthy volunteers) ≤45 years old. Erosions, EE, and BF were recorded according to standardized definitions. Reproducibility was assessed by percentage concordance among six possible reader pairs, kappa statistics (erosion as binary variable) and intraclass correlation coefficient (ICC) (erosion as sum score) for all readers jointly.

Results

SIJ erosions were detected in all AS patients and six controls by ≥2 readers. The median number of SIJ quadrants affected by erosion recorded by four readers in 30 AS patients was 8.6 in the iliac and 2.1 in the sacral joint portion (P < 0.0001). For all 60 subjects and for all four readers, the kappa value for erosion was 0.72, 0.73 for EE, and 0.63 for BF. ICC for erosion was 0.79, 0.72 for EE, and 0.55 for BF, respectively. For comparison, the kappa and ICC values for bone marrow edema were 0.61 and 0.93, respectively.

Conclusions

Erosions can be detected on MRI to a comparable degree of reliability as bone marrow edema despite the significant heterogeneity of their appearance on MRI.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号