首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The immunoglobulin (Ig) heavy chain variable (VH) gene family of Heterodontus francisci (horned shark), a phylogenetically distant vertebrate, is unique in that VH, diversity (DH), joining (JH) and constant region (CH) gene segments are linked closely, in multiple individual clusters. The V regions of 12 genomic (liver and gonad) DNA clones have been sequenced completely and three organization patterns are evident: (i) VH-D1-D2-JH-CH with unique 12/22 and 12/12 spacers in the respective D recombination signal sequences (RSSs); VH and JH segments have 23 nucleotide (nt) spacers, (ii) VHDH-JH-CH, an unusual germline configuration with joined VH and DH segments and (iii) VHDHJH-CH, with all segmental elements being joined. The latter two configurations do not appear to be pseudogenes. Another VH-D1-D2-JH-CH gene possesses a D1 segment that is flanked by RSSs with 12 nt spacers and a D2 segment with 22/12 spacers. Based on the comparison of spleen, VH+ cDNA sequences to a germline consensus, it is evident that both DH segments as well as junctional and N-type diversity account for Ig variability. In this early vertebrate, the Ig genes share unique properties with higher vertebrate T-cell receptor as well as with Ig and may reflect the structure of a common ancestral antigen binding receptor gene.  相似文献   

2.
3.
4.
P Early  H Huang  M Davis  K Calame  L Hood 《Cell》1980,19(4):981-992
We have determined the sequences of separate germline genetic elements which encode two parts of a mouse immunglobulin heavy chain variable region. These elements, termed gene segments, are heavy chain counterparts of the variable (V) and joining (J) gene segments of immunoglobulin light chains. The VH gene segment encodes amino acids 1-101 and the JH gene segment encodes amino acids 107-123 of the S107 phosphorylcholine-binding VH region. This JH gene segment and two other JH gene segments are located 5' to the mu constant region gene (Cmu) in germline DNA. We have also determined the sequence of a rearranged VH gene encoding a complete VH region, M603, which is closely related to S107. In addition, we have partially determined the VH coding sequences of the S107 and M167 heavy chain mRNAs. By comparing these sequences to the germline gene segments, we conclude that the germline VH and JH gene segments do not contain at least 13 nucleotides which are present in the rearranged VH genes. In S107, these nucleotides encode amino acids 102-106, which form part of the third hypervariable region and consequently influence the antigen-binding specificity of the immunoglobulin molecule. This portion of the variable region may be encoded by a separate germline gene segment which can be joined to the VH and JH gene segments. We term this postulated genetic element the D gene segment, referring to its role in the generation of heavy chain diversity. Essentially the same noncoding sequences are found 3' to the VH gene segment and as inverse complements 5' to two JH gene segments. These are the same conserved nucleotides previously found adjacent to light chain V and J gene segments. Each conserved sequence consists of blocks of seven and ten conserved nucleotides which are separated by a spacer of either 11 or 22 nonconserved nucleotides. The highly conserved spacing, corresponding to one or two turns of the DNA helix, maintains precise spatial orientations between blocks of conserved nucleotides. Gene segments which can join to one another (VK and JK, for example) always have spacers of different lengths. Based on these observations, we propose a model for variable region gene rearrangement mediated by proteins which recognize the same conserved sequences adjacent to both light and heavy chain immunoglobulin gene segments.  相似文献   

5.
1. The present paper reports some aspects of the isozymes of LDH, MDH and GPI in fish. 2. In Petromyzontiformes LDH is encoded by a single Ldh-A gene locus. In Myxiniformes and in most vertebrates LDH is encoded by two gene loci, A and B. A third Ldh-C locus is characteristic of the bony fishes Actinopterygii. 3. In fish the MDH isozymes are generally encoded by three gene loci Mdh-M, Mdh-A and Mdh-B. 4. In most diploid bony fish the GPI is controlled by two independent gene loci Gpi-A and Gpi-B. 5. The relationships of isozymes with evolution of vertebrates, tissual specificity, ontogenetic changes, with physiological and metabolic roles are discussed.  相似文献   

6.
The immunoglobulin heavy chain variable region is encoded as three separate libraries of elements in germ-line DNA: VH, D and JH. To examine the order and regulation of their joining, we have developed assays that distinguish their various combinations and have used the assays to study tumor cell analogs of B-lymphoid cells as well as normal B-lymphoid cells. Abelson murine leukemia virus (A-MuLV) transformed fetal liver cells - the most primitive B-lymphoid cell analog available for analysis - generally had DJH rearrangements at both JH loci. These lines continued DNA rearrangement in culture, in most cases by joining a VH gene segment to an existing DJH complex with the concomitant deletion of intervening DNA sequences. None of these lines or their progeny showed evidence of VHD or DD rearrangements. Heavy chain-producing tumor lines, representing more mature stages of the B-cell pathway, and normal B-lymphocytes had either two VHDJH rearrangements or a VHDJH plus a DJH rearrangement at their two heavy chain loci; they also showed no evidence of VHD or DD rearrangements. These results support an ordered mechanism of variable gene assembly during B-cell differentiation in which D-to-JH rearrangements generally occur first and on both chromosomes followed by VH-to-DJH rearrangements, with both types of joining processes occurring by intrachromosomal deletion. The high percentage of JH alleles remaining in the DJH configuration in heavy chain-producing lines and, especially, in normal B-lymphocytes supports a regulated mechanism of heavy chain allelic exclusion in which a VHDJH rearrangement, if productive, prevents an additional VH-to-DJH rearrangement.  相似文献   

7.
We have characterized the genomic organization of the three zebrafish L chain isotypes and found they all differed from those reported in other teleost fishes. Two of the zebrafish L chain isotypes are encoded by two loci, each carrying multiple V gene segments. To understand the derivation of these L chain genes and their organizations, we performed phylogenetic analyses and show that IgL organization can diverge considerably among closely related species. Except in zebrafish, the teleost fish IgL each contain only two to four recombinogenic components (one to three V, one J) and exist in multiple copies. BCR heterogeneity can be generated, but this arrangement apparently provides neither combinatorial diversification nor an opportunity for the secondary rearrangements that, in mammals, take place during receptor editing, a process crucial to the promotion of tolerance in developing lymphocytes. Examination of the zebrafish IgL recombination possibilities gave insight into how the suppression of self-reactivity by receptor editing might be managed, including in miniloci. We suggest that, despite the diverse IgL organizations in early and higher vertebrates, two elements essential to generating the Ab repertoire are retained: the numerous genes/loci for ligand-binding diversification and the potential for correcting unwanted specificities that arise.  相似文献   

8.
9.
Clustered regularly interspaced short palindromic repeats (CRISPRs) are a family of DNA direct repeats found in many prokaryotic genomes. Repeats of 21-37 bp typically show weak dyad symmetry and are separated by regularly sized, nonrepetitive spacer sequences. Four CRISPR-associated (Cas) protein families, designated Cas1 to Cas4, are strictly associated with CRISPR elements and always occur near a repeat cluster. Some spacers originate from mobile genetic elements and are thought to confer "immunity" against the elements that harbor these sequences. In the present study, we have systematically investigated uncharacterized proteins encoded in the vicinity of these CRISPRs and found many additional protein families that are strictly associated with CRISPR loci across multiple prokaryotic species. Multiple sequence alignments and hidden Markov models have been built for 45 Cas protein families. These models identify family members with high sensitivity and selectivity and classify key regulators of development, DevR and DevS, in Myxococcus xanthus as Cas proteins. These identifications show that CRISPR/cas gene regions can be quite large, with up to 20 different, tandem-arranged cas genes next to a repeat cluster or filling the region between two repeat clusters. Distinctive subsets of the collection of Cas proteins recur in phylogenetically distant species and correlate with characteristic repeat periodicity. The analyses presented here support initial proposals of mobility of these units, along with the likelihood that loci of different subtypes interact with one another as well as with host cell defensive, replicative, and regulatory systems. It is evident from this analysis that CRISPR/cas loci are larger, more complex, and more heterogeneous than previously appreciated.  相似文献   

10.
Immunoglobulin heavy chain genes from Raja erinacea have been isolated by cross hybridization with probes derived from the immunoglobulin genes of Heterodontus francisci (horned shark), a representative of a different elasmobranch order. Heavy chain variable (VH), diversity (DH) and joining (JH) segments are linked closely to constant region (CH) exons, as has been described in another elasmobranch. The nucleotide sequence homology of VH gene segments within Raja and between different elasmobranch species is high, suggesting that members of this phylogenetic subclass may share one VH family. The organization of immunoglobulin genes segments is diverse; both VD-J and VD-DJ joined genes have been detected in the genome of non-lymphoid cells. JH segment sequence diversity is high, in contrast to that seen in a related elasmobranch. These data suggest that the clustered V-D-J-C form of immunoglobulin heavy chain organization, including germline joined components, may occur in all subclasses of elasmobranchs. While variation in VH gene structure is limited, gene organization appears to be diverse.  相似文献   

11.
Prokaryotic chromosomes code for toxin–antitoxin (TA) loci, often in multiple copies. In E.coli, experimental evidence indicates that TA loci are stress-response elements that help cells survive unfavorable growth conditions. The first gene in a TA operon codes for an antitoxin that combines with and neutralizes a regulatory ‘toxin’, encoded by the second gene. RelE and MazF toxins are regulators of translation that cleave mRNA and function, in interplay with tmRNA, in quality control of gene expression. Here, we present the results from an exhaustive search for TA loci in 126 completely sequenced prokaryotic genomes (16 archaea and 110 bacteria). We identified 671 TA loci belonging to the seven known TA gene families. Surprisingly, obligate intracellular organisms were devoid of TA loci, whereas free-living slowly growing prokaryotes had particularly many (38 in Mycobacterium tuberculosis and 43 in Nitrosomonas europaea). In many cases, TA loci were clustered and closely linked to mobile genetic elements. In the most extreme of these cases, all 13 TA loci of Vibrio cholerae were bona fide integron elements located in the V.cholerae mega-integron. These observations strongly suggest that TA loci are mobile cassettes that move frequently within and between chromosomes and also lend support to the hypothesis that TA loci function as stress-response elements beneficial to free-living prokaryotes.  相似文献   

12.
The evolution of adaptive immune systems   总被引:11,自引:0,他引:11  
Cooper MD  Alder MN 《Cell》2006,124(4):815-822
A clonally diverse anticipatory repertoire in which each lymphocyte bears a unique antigen receptor is the central feature of the adaptive immune system that evolved in our vertebrate ancestors. The survival advantage gained through adding this type of adaptive immune system to a pre-existing innate immune system led to the evolution of alternative ways for lymphocytes to generate diverse antigen receptors for use in recognizing and repelling pathogen invaders. All jawed vertebrates assemble their antigen-receptor genes through recombinatorial rearrangement of different immunoglobulin or T cell receptor gene segments. The surviving jawless vertebrates, lampreys and hagfish, instead solved the receptor diversification problem by the recombinatorial assembly of leucine-rich-repeat genetic modules to encode variable lymphocyte receptors. The convergent evolution of these remarkably different adaptive immune systems involved innovative genetic modification of innate-immune-system components.  相似文献   

13.
Mitochondrial and nuclear DNAs contribute to encode the whole mitochondrial protein complement. The two genomes possess highly divergent features and properties, but the forces influencing their evolution, even if different, require strong coordination. The gene content of mitochondrial genome in all Metazoa is in a frozen state with only few exceptions and thus mitochondrial genome plasticity especially concerns some molecular features, i.e. base composition, codon usage, evolutionary rates. In contrast the high plasticity of nuclear genomes is particularly evident at the macroscopic level, since its redundancy represents the main feature able to introduce genetic material for evolutionary innovations. In this context, genes involved in oxidative phosphorylation (OXPHOS) represent a classical example of the different evolutionary behaviour of mitochondrial and nuclear genomes. The simple DNA sequence of Cytochrome c oxidase I (encoded by the mitochondrial genome) seems to be able to distinguish intra- and inter-species relations between organisms (DNA Barcode). Some OXPHOS subunits (cytochrome c, subunit c of ATP synthase and MLRQ) are encoded by several nuclear duplicated genes which still represent the trace of an ancient segmental/genome duplication event at the origin of vertebrates.  相似文献   

14.
Circular DNA, derived from lymphocytes of juvenile channel catfish, was used to construct lambda libraries that were screened to identify the products of immunoglobulin DH-JH excision events. Clones were characterized that contained DH to JH recombination signal joints. The signal joints represented 23-bp recombination signal sequences (RSS) identical to germline JH segments that were adjacent to DH 12-bp RSS elements. DH flanking regions within the clones were used to probe a genomic library. Three germline DH gene segments containing 11-19 bp coding regions flanked by 12-bp RSS elements with conserved heptamers and nonamers were identified. The DH locus is closely linked to the JH locus, and Southern blots indicate that the DH segments represent different single member gene families. Analysis of H chain cDNA shows that each germline DH segment was expressed in functional VDJ recombination events involving different JH segments and members of different VH families. Several aspects of CDR3 junctional diversity were evident, including deletion of coding region nucleotides, N- and P-region nucleotide additions, alternate DH reading frame utilization, and point mutations. Coding region motifs of catfish DH segments are phylogenetically conserved in some DH segments of higher vertebrates. These studies indicate that the structure, genomic organization, and recombination patterns of DH segments typically associated with higher vertebrates evolved early in vertebrate phylogeny at the level of the bony fish.  相似文献   

15.
Nitric oxide synthases (NOS), the enzymes responsible for the NO synthesis, are present in all eukaryotes. Three isoforms (neuronal, inducible and endothelial), encoded by different loci, have been described in vertebrates, although the endothelial isoform seems to be restricted to tetrapods. In invertebrates, a variety of NOS isoforms have been variably annotated as "inducible" or "neuronal", while others lack precise annotation. We have performed an exhaustive collection of the available NOS amino-acid sequences in order to perform a phylogenetic analysis. We hypothesized that the NOS isoforms reported in vertebrates derive from 1) different invertebrate NOS, 2) a single invertebrate ancestral gene, through an event related to the double whole genomic duplication that occurred at the origin of vertebrates, and 3) the endothelial form of NOS appeared late in the evolution of vertebrates, after the split of tetrapods and fishes. Our molecular evolution analysis strongly supports the second scenario, the three vertebrate NOS isoforms derived from a single ancestral invertebrate gene. Thus, the diverse NOS isoforms in invertebrates can be explained by events of gene duplication, but their characterization as "inducible" or "neuronal" should only be justified by physiological features, since they are evolutionarily unrelated to the homonym isoforms of vertebrates.  相似文献   

16.
The SSK41 cell is an immunoglobulin IgM+ human neoplastic B-cell line that switches to IgG+ cells (SSK gamma) spontaneously. We isolated a derivative of SSK41 (SSKWB) that expressed both IgM and IgG. Studies on the Ig heavy chain gene organization have shown that the SSKWB cell had two identical VDJ genes on the same chromosome; one linked to the C mu gene and the other to the C gamma 1 gene, both of which are transcribed to produce mu- and gamma-mRNAs with the same VDJ sequence. We also isolated the two switch variants derived from the SSKWB cell by cell sorter: 1G (IgG+) and 11M (IgM+). The 1G cells contained two populations; one had a similar genetic organization as SSK gamma and expressed only IgG1, and the other carried the same genetic organization as the SSKWB cell but produced aberrantly spliced mu-chain mRNA, in which the hydrophobic signal sequence exon is directly joined to the C mu exon. Te 11M cell deleted the VDJ-C gamma 1 segment of the SSKWB cell and expressed IgM. These results raise the interesting possibility of another mechanism for class switching.  相似文献   

17.
18.

Background

Precise analysis of expression-regulating elements, such as enhancers and insulators, requires that they be tested under reproducible, isogenic conditions. The commonly used methods of transfecting DNA into cell lines and selecting for drug resistance lack the requisite precision, as they yield cell lines in which varying numbers of gene copies have inserted at varying and undefined sites. By contrast, recombination-mediated cassette exchange (RMCE), by which a site-specific recombinase is used to place a single copy of a transgene at a constant chromosomal site of a cell line, offers the necessary precision. Although RMCE is generally applicable, many regulatory elements of interest are tissue-specific in their function and so require cell lines in the appropriate ontogenetic state.

Results

As reported here, we have used RMCE in a mouse B hybridoma cell line to establish a system with several additional advantages. To avoid the non-physiological features of prokaryotic DNA, this system uses the immunoglobulin μ heavy chain (IgH) gene from the hybridoma as the reporter. Expression can be measured simply by bulk culture assays (ELISA, Northern blot) and single cell assays (flow cytometry). Expression of the IgH reporter gene varies only 1.5 fold among independent transfectants, and expression is greatly (> 50 fold) increased by inclusion of the IgH intronic enhancer.

Conclusion

This system is suitable for precise analysis of the regulatory elements of the immunoglobulin loci.  相似文献   

19.
A simple, fast, and biologically inspired computational approach for inferring genome-scale rearrangement phylogeny and ancestral gene order has been developed. This has been applied to eight Drosophila genomes. Existing techniques are either limited to a few hundred markers or a small number of taxa. This analysis uses over 14,000 genomic loci and employs discrete elements consisting of pairs of homologous genetic elements. The results provide insight into evolutionary chromosomal dynamics and synteny analysis, and inform speciation studies.  相似文献   

20.
鱼类免疫球蛋白基因结构及抗体多样性的遗传机制   总被引:2,自引:0,他引:2  
张永安  聂品  朱作言 《遗传》2002,24(5):575-580
本文对鱼类免疫球蛋白的基因结构以及抗体多样性产生的遗传机制作一综述。免疫球蛋白重链和轻链是由不同染色体上的多基因座编码的,在鱼类的不同分类单元中具有不同的基因组织方式。鱼类抗体可以识别外界为数众多的抗原,其多样性主要是由以下遗传机制产生的:种系V区编码区段的多样性、V (D) J区段组合的多样性、基因重组的不精确性、基因转换、体细胞突变以及H和L链的随机组合等。 Gene Structure and Genetic Diversity of Immunoglobulins in Fish ZHANG Yong-an,NIE Pin,ZHU Zuo-yan State Key Laboratory of Freshwater Ecology and Biotechnology,Institute of Hydrobiology,Chinese Academy of Sciences,Wuhan 430072,China Abstract:The current knowledge concerning the structure of fish immunoglobulin (Ig) genes and the genetic mechanisms in generating fish antibody diversities is reviewed.The heavy (H-) and light (L-) chains of the immunoglobulin are encoded by multigenic loci on separate chromosomes.In different taxa of fish,the Ig genes are organized in different patterns.Fish antibody can recognize various foreign antigens,and the antibody diversity is generated by the following genetic mechanisms:the sequence diversity within the segments encoding the variable domain,the combinatorial diversity of V (D) J segments,the imprecision of rearrangements,gene conversion,somatic hypermutation,and the combination of H- and L-chain. Key words:immunoglobulin; gene; antibody; diversity; fish  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号