首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   68篇
  免费   12篇
  2023年   1篇
  2020年   1篇
  2019年   2篇
  2018年   1篇
  2017年   2篇
  2015年   4篇
  2014年   6篇
  2013年   4篇
  2012年   6篇
  2011年   5篇
  2010年   2篇
  2009年   3篇
  2008年   7篇
  2007年   3篇
  2006年   1篇
  2005年   3篇
  2004年   1篇
  2002年   2篇
  2001年   1篇
  1999年   1篇
  1998年   8篇
  1997年   2篇
  1996年   1篇
  1995年   1篇
  1992年   3篇
  1988年   1篇
  1979年   2篇
  1977年   1篇
  1975年   3篇
  1971年   1篇
  1954年   1篇
排序方式: 共有80条查询结果,搜索用时 265 毫秒
1.
In a variety of tumour systems, individuals carrying progressively growing neoplasms have lymphoid cells with a specific cytotoxic effect on cultured tumour cells from the same individual1–4. Since the sera of tumour-bearing individuals have been shown to prevent tumour cell destruction by immune lymphocytes in vitro2,5–8 and since this serum blocking activity appears early in primary and transplant tumour development5,7, it has been suggested that the appearance of this serum blocking activity might be responsible for the progressive growth of tumours in individuals having cytotoxic lymphocytes. Counteraction of this blocking activity would thus be of primary importance in facilitating the function of an already existing or bolstered cell-mediated immunity. The serum blocking activity might be inhibited in various ways, by preventing the formation of blocking antibody or by interfering with its action (“unblocking”), as demonstrated in Moloney sarcoma regressor sera9. This type of serum also has a therapeutic effect on Moloney sarcomas in vivo10,11, which has been tentatively attributed to its unblocking activity8,9 or, possibly, to a complement-dependent cytotoxicity10. Tumour growth in the Moloney sarcoma system, however, might be due in part to continuous recruitment of neoplastic cells by virus-induced transformation and so the therapeutic effect could be due to a virus-neutralizing serum activity9,10.  相似文献   
2.
In the preceding paper (Sheetz, M. and S.J. Singer. 1977. J Cell Biol. 73:638-646) it was shown that erythrocyte ghosts undergo pronounced shape changes in the presence of mg-ATP. The biochemical effects of the action of ATP are herein examined. The biochemical effects of the action of ATP are herein examined. Phosphorylation by ATP of spectrin component 2 of the erythrocyte membrane is known to occur. We have shown that it is only membrane protein that is significantly phosphorylated under the conditions where the shape changes are produced. The extent of this phosphorylation rises with increasing ATP concentration, reaching nearly 1 mol phosphoryle group per mole of component 2 at 8mM ATP. Most of this phosphorylation appears to occur at a single site on the protein molecule, according to cyanogen bromide peptide cleavage experiments. The degree of phosphorylation of component 2 is apparently also regulated by a membrane-bound protein phosphatase. This activity can be demonstrated in erythrocyte ghosts prepared from intact cells prelabeled with [(32)P]phosphate. In addition to the phosphorylation of component 2, some phosphorylation of lipids, mainly of phosphatidylinositol, is also known to occur. The ghost shape changes are, however, shown to be correlated with the degree of phosphorylation of component 2. In such experiment, the incorporation of exogenous phosphatases into ghosts reversed the shape changes produced by ATP, or by the membrane-intercalating drug chlorpromazine. The results obtained in this and the preceding paper are consistent with the proposal that the erythrocyte membrane possesses kinase and phosphates activities which produce phosphorylation and dephosphorylation of a specific site on spectrin component 2 molecules; the steady-state level of this phosphorylation regulates the structural state of the spectrin complex on the cytoplasmic surface of the membrane, which in turn exerts an important control on the shape of the cell.  相似文献   
3.
Gold salts and phenylbutazone selectively inhibit the synthesis of PGF and PGE2 respectively. Lowered production of one prostaglandin species is accompanied by an increased production of the other. Selective inhibition by these drugs was observed in the presence of adrenaline, reduced glutathione and copper sulphate under conditions when most anti-inflammatory compounds inhibited PGE2 and PGF syntheses equally. It is postulated that selective inhibitors may have a different mode of action and beneficial effects may be related to the endogenous ratio of PGE to PGF required for normal function.  相似文献   
4.
5.
Summary : FT is a tool written in C++, which implements the Fourier analysis method to locate periodicities in aminoacid or DNA sequences. It is provided for free public use on a WWW server with a Java interface. Availability : The server address is http://o2.db. uoa.gr/FT Contact : shamodr@atlas.uoa.gr   相似文献   
6.
Cyclic diguanylate (c-di-GMP) is a second messenger controlling many important bacterial processes. The phytopathogen Pectobacterium atrosepticum SCRI1043 (Pba1043) possesses a Type I secretion system (T1SS) essential for the secretion of a proteinaceous multi-repeat adhesin (MRP) required for binding to the host plant. The genes encoding the MRP and the T1SS are tightly linked to genes encoding several putative c-di-GMP regulatory components. We show that c-di-GMP regulates secreted MRP levels in Pba1043 through the action of two genes encoding predicted diguanylate cyclase (DGC) and phosphodiesterase proteins (ECA3270 and ECA3271). Phenotypic analyses and quantification of c-di-GMP levels demonstrated that ECA3270 and ECA3271 regulate secreted MRP levels by increasing and decreasing, respectively, the intracellular levels of c-di-GMP. Moreover, ECA3270 represents the first active DGC reported to have an alternative active-site motif from the 'canonical' GG[D/E]EF. ECA3270 has an A-site motif of SGDEF and analysis of single amino acid replacements demonstrated that the first position of this motif can tolerate functional substitution. Serine in position one of the A-site is also observed in many other DGCs. Finally, another T1SS-linked regulator (ECA3265) also plays an important role in regulating secreted MRP, with an altered localization of MRP observed in an ECA3265 mutant background. Mutants defective in these three T1SS-linked regulators exhibit a reduction in root binding and virulence, confirming that this complex, finely tuned regulation system is crucial in the interaction with host plants.  相似文献   
7.
In Pseudomonas aeruginosa three type VI secretion systems (T6SSs) coexist, called H1‐ to H3‐T6SSs. Several T6SS components are proposed to be part of a macromolecular complex resembling the bacteriophage tail. The T6SS protein HsiE1 (TagJ) is unique to the H1‐T6SS and absent from the H2‐ and H3‐T6SSs. We demonstrate that HsiE1 interacts with a predicted N‐terminal α‐helix in HsiB1 (TssB) thus forming a novel subcomplex of the T6SS. HsiB1 is homologous to the Vibrio cholerae VipA component, which contributes to the formation of a bacteriophage tail sheath‐like structure. We show that the interaction between HsiE1 and HsiB1 is specific and does not occur between HsiE1 and HsiB2. Proteins of the TssB family encoded in T6SS clusters lacking a gene encoding a TagJ‐like component are often devoid of the predicted N‐terminal helical region, which suggests co‐evolution. We observe that a synthetic peptide corresponding to the N‐terminal 20 amino acids of HsiB1 interacts with purified HsiE1 protein. This interaction is a common feature to other bacterial T6SSs that display a TagJ homologue as shown here with Serratia marcescens. We further show that hsiE1 is a non‐essential gene for the T6SS and suggest that HsiE1 may modulate incorporation of HsiB1 into the T6SS.  相似文献   
8.
There is a continuing need to discover new bioactive natural products, such as antibiotics, in genetically-amenable micro-organisms. We observed that the enteric insect pathogen, Serratia marcescens Db10, produced a diffusible compound that inhibited the growth of Bacillis subtilis and Staphyloccocus aureus. Mapping the genetic locus required for this activity revealed a putative natural product biosynthetic gene cluster, further defined to a six-gene operon named alb1–alb6. Bioinformatic analysis of the proteins encoded by alb1–6 predicted a hybrid non-ribosomal peptide synthetase-polyketide synthase (NRPS-PKS) assembly line (Alb4/5/6), tailoring enzymes (Alb2/3) and an export/resistance protein (Alb1), and suggested that the machinery assembled althiomycin or a related molecule. Althiomycin is a ribosome-inhibiting antibiotic whose biosynthetic machinery had been elusive for decades. Chromatographic and spectroscopic analyses confirmed that wild type S. marcescens produced althiomycin and that production was eliminated on disruption of the alb gene cluster. Construction of mutants with in-frame deletions of specific alb genes demonstrated that Alb2–Alb5 were essential for althiomycin production, whereas Alb6 was required for maximal production of the antibiotic. A phosphopantetheinyl transferase enzyme required for althiomycin biosynthesis was also identified. Expression of Alb1, a predicted major facilitator superfamily efflux pump, conferred althiomycin resistance on another, sensitive, strain of S. marcescens. This is the first report of althiomycin production outside of the Myxobacteria or Streptomyces and paves the way for future exploitation of the biosynthetic machinery, since S. marcescens represents a convenient and tractable producing organism.  相似文献   
9.
Salmonella enterica serovar Typhimurium is a Gram‐negative pathogen capable of respiration with a number of terminal electron acceptors. Tetrathionate reductase is important for the infection process and is encoded by the ttrBCA operon where TtrA and TtrB are metallocofactor‐containing proteins targeted to the periplasmic side of the membrane by two different Tat targeting peptides. In this work, the inter‐relationship between these two signal peptides has been explored. Molecular genetics and biochemical approaches reveal that the processing of the TtrB Tat signal peptide is dependent on the successful assembly of its partner protein, TtrA. Inactivation of either the TtrA or the TtrB Tat targeting peptides individually was observed to have limited overall effects on assembly of the enzyme or on cellular tetrathionate reductase activity. However, inactivation of both signal peptides simultaneously was found to completely abolish physiological tetrathionate reductase activity. These data suggest both signals are normally active during assembly of the enzyme, and imply a code of conduct exists between the signal peptides where one can compensate for inactivity in the other. Since it appears likely that tetrathionate reductase presents itself for export as a multi‐signal complex, these observations also have implications for the mechanism of the bacterial Tat translocase.  相似文献   
10.
Amiloride does not alter NaCl avoidance in Fischer-344 rats   总被引:2,自引:2,他引:0  
Fischer-344 (F-344) rats differ from other common rat strains in that they fail to show any preference for NaCl at any concentration in two- bottle preference tests. Because 100 microM amiloride partially blocks the NaCl-evoked chorda tympani (CT) response in electrophysiological studies, we tested NaCl preference (0.068-0.273 M) in F-344 rats with and without 100 microM amiloride solution as the solvent. A third group was tested with unadulterated NaCl solutions following CT transection. Amiloride had no significant effect on the NaCl preference-aversion function, whereas CT transection significantly reduced NaCl avoidance. These results suggest that the amiloride-sensitive component of the NaCl response is not necessary for F-344 rats to display avoidance of NaCl, but the entire CT input is.   相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号