首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   614篇
  免费   63篇
  2023年   3篇
  2022年   3篇
  2021年   17篇
  2020年   8篇
  2019年   14篇
  2018年   5篇
  2017年   15篇
  2016年   20篇
  2015年   42篇
  2014年   35篇
  2013年   47篇
  2012年   56篇
  2011年   44篇
  2010年   50篇
  2009年   32篇
  2008年   55篇
  2007年   41篇
  2006年   29篇
  2005年   35篇
  2004年   36篇
  2003年   29篇
  2002年   20篇
  2001年   5篇
  2000年   1篇
  1999年   3篇
  1998年   6篇
  1997年   6篇
  1996年   1篇
  1995年   2篇
  1994年   1篇
  1993年   3篇
  1992年   4篇
  1991年   2篇
  1989年   1篇
  1988年   1篇
  1986年   1篇
  1984年   1篇
  1983年   1篇
  1976年   1篇
  1964年   1篇
排序方式: 共有677条查询结果,搜索用时 46 毫秒
1.
The speed and accuracy of protein synthesis are fundamental parameters for understanding the fitness of living cells, the quality control of translation, and the evolution of ribosomes. In this study, we analyse the speed and accuracy of the decoding step under conditions reproducing the high speed of translation in vivo. We show that error frequency is close to 10−3, consistent with the values measured in vivo. Selectivity is predominantly due to the differences in kcat values for cognate and near-cognate reactions, whereas the intrinsic affinity differences are not used for tRNA discrimination. Thus, the ribosome seems to be optimized towards high speed of translation at the cost of fidelity. Competition with near- and non-cognate ternary complexes reduces the rate of GTP hydrolysis in the cognate ternary complex, but does not appreciably affect the rate-limiting tRNA accommodation step. The GTP hydrolysis step is crucial for the optimization of both the speed and accuracy, which explains the necessity for the trade-off between the two fundamental parameters of translation.  相似文献   
2.
3.
Clustered regularly interspaced short palindromic repeats (CRISPR), in combination with CRISPR associated (cas) genes, constitute CRISPR-Cas bacterial adaptive immune systems. To generate immunity, these systems acquire short sequences of nucleic acids from foreign invaders and incorporate these into their CRISPR arrays as spacers. This adaptation process is the least characterized step in CRISPR-Cas immunity. Here, we used Pectobacterium atrosepticum to investigate adaptation in Type I-F CRISPR-Cas systems. Pre-existing spacers that matched plasmids stimulated hyperactive primed acquisition and resulted in the incorporation of up to nine new spacers across all three native CRISPR arrays. Endogenous expression of the cas genes was sufficient, yet required, for priming. The new spacers inhibited conjugation and transformation, and interference was enhanced with increasing numbers of new spacers. We analyzed ∼350 new spacers acquired in priming events and identified a 5′-protospacer-GG-3′ protospacer adjacent motif. In contrast to priming in Type I-E systems, new spacers matched either plasmid strand and a biased distribution, including clustering near the primed protospacer, suggested a bi-directional translocation model for the Cas1:Cas2–3 adaptation machinery. Taken together these results indicate priming adaptation occurs in different CRISPR-Cas systems, that it can be highly active in wild-type strains and that the underlying mechanisms vary.  相似文献   
4.
Summary Pericentric inversion of chromosome 19 has been found in several members of three unrelated families from a restricted geographical region. In one of the families, an additional pericentric inversion of chromosome 9 was observed. Reproductive problems, multiple abortions in two families and a neonatal death in the third, were present. A review of previously described cases is included, and the genetic risk connected with this type of rearrangement is also discussed.  相似文献   
5.
Abstract Pseudomonas sp. strain RW611 utilized the ammonium salt of 2-sulfobenzoate as sole source of carbon, sulfur, nitrogen, and energy. The xenobiotic sulfo substituent was dioxygenolytically eliminated as sulfite, which was then slowly oxidized to sulfate. 2,3-Dihydroxybenzoate, which resulted from desulfonation underwent meta -cleavage, mediated by 2,3-dihydroxybenzoate 3,4-dioxygenase activity. This enzyme was inhibited by 3-chlorocatechol and 2,3,4-trihydroxybenzoate.  相似文献   
6.
7.
8.
Arginine vasopressin stimulates Na+-K+-ATPase activity located in the rat thick ascending limb of s'Henle loop. Mammalian hypothalamus appears to produce a factor capable of inhibiting Na+-K+-ATPase activity in a variety of tissues. The effect of a purified rat hypothalamic extract with and without AVP on rat renal Na+-K+-ATPase activity was evaluated by a cytochemical technique. The hypothalamic extract alone failed to affect basal Na+-K+-ATPase activity throughout renal segments after 10 min exposure. Na+-K+-ATPase activity stimulated by AVP (1–10 fmol l?1) for 10 min was inhibited by rat hypothalamic extract over the concentration range 10?7–10?3 U ml?1 in a dose-dependent manner. Complete inhibition of AVP-stimulated Na+-K+-ATPase activity occurred at a hypothalamic extract concentration of 10?3 U ml?1. Only Na+-K+-ATPase activity located in the renal medullary thick ascending limb was influenced by the rat hypothalamic extract.  相似文献   
9.

Background

An important phenomenon observed in glioma metabolism is increased aerobic glycolysis in tumor cells, which is generally referred to as the Warburg effect. Transforming growth factor (TGF)-beta2, which we previously showed to be induced by lactic acid, is a key pathophysiological factor in glioblastoma, leading to increased invasion and severe local immunosuppression after proteolytic cleavage from its latency associated peptide. In this study we tested the hypothesis, that lactate regulates TGF-beta2 expression and glioma cell migration via induction of Thrombospondin-1 (THBS-1), a TGF-beta activating protein.

Methods

Lactate levels were reduced by knockdown of LDH-A using specific small interfering RNA (siRNA) and competitive inhibition of LDH-A by sodium oxamate. Knockdown of THBS-1 was performed using specific siRNA. Western Blot, qRT-PCR, and ELISA were used to investigate expression levels of LDH-A, LDH-B, TGF-beta2 and THBS-1. Migration of cells was examined by Spheroid, Scratch and Boyden Chamber assays.

Results

Knockdown of LDH-A with subsequent decrease of lactate concentration leads to reduced levels of THBS-1 and TGF-beta2 in glioma cells. Lactate addition increases THBS-1 protein, leading to increased activation of TGF-beta2. Inhibition of THBS-1 reduces TGF-beta2 protein and migration of glioma cells. Addition of synthetic THBS-1 can rescue reduced TGF-beta2 protein levels and glioma cell migration in siLDH-A treated cells.

Conclusion

We define a regulatory cascade between lactate, THBS-1 and TGF-beta2, leading to enhanced migration of glioma cells. Our results demonstrate a specific interaction between tumor metabolism and migration and provide a better understanding of the mechanisms underlying glioma cell invasion.  相似文献   
10.
Exendin-4 is a molecule currently used, in its synthetic form exenatide, for the treatment of type 2 diabetes mellitus. Exendin-4 binds and activates the Glucagon-Like Peptide-1 Receptor (GLP-1R), thus inducing insulin release. More recently, additional biological properties have been associated to molecules that belong to the GLP-1 family. For instance, Peptide YY and Vasoactive Intestinal Peptide have been found to affect cell adhesion and migration and our previous data have shown a considerable actin cytoskeleton rearrangement after exendin-4 treatment. However, no data are currently available on the effects of exendin-4 on tumor cell motility. The aim of this study was to investigate the effects of this molecule on cell adhesion, differentiation and migration in two neuroblastoma cell lines, SH-SY5Y and SK-N-AS. We first demonstrated, by Extra Cellular Matrix cell adhesion arrays, that exendin-4 increased cell adhesion, in particular on a vitronectin substrate. Subsequently, we found that this molecule induced a more differentiated phenotype, as assessed by i) the evaluation of neurite-like protrusions in 3D cell cultures, ii) the analysis of the expression of neuronal markers and iii) electrophysiological studies. Furthermore, we demonstrated that exendin-4 reduced cell migration and counteracted anchorage-independent growth in neuroblastoma cells. Overall, these data indicate for the first time that exendin-4 may have anti-tumoral properties.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号