首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1819篇
  免费   176篇
  2023年   12篇
  2022年   9篇
  2021年   76篇
  2020年   52篇
  2019年   70篇
  2018年   72篇
  2017年   56篇
  2016年   82篇
  2015年   130篇
  2014年   131篇
  2013年   150篇
  2012年   160篇
  2011年   145篇
  2010年   80篇
  2009年   67篇
  2008年   101篇
  2007年   88篇
  2006年   60篇
  2005年   62篇
  2004年   59篇
  2003年   41篇
  2002年   39篇
  2001年   8篇
  2000年   8篇
  1999年   10篇
  1998年   10篇
  1997年   10篇
  1996年   9篇
  1995年   11篇
  1994年   9篇
  1993年   6篇
  1992年   14篇
  1991年   17篇
  1990年   13篇
  1989年   15篇
  1988年   11篇
  1987年   13篇
  1986年   12篇
  1985年   11篇
  1984年   4篇
  1982年   6篇
  1981年   6篇
  1979年   5篇
  1977年   6篇
  1974年   4篇
  1973年   3篇
  1972年   3篇
  1971年   3篇
  1969年   4篇
  1967年   4篇
排序方式: 共有1995条查询结果,搜索用时 15 毫秒
1.
Cystic Fibrosis (CF) is a human genetic disease that results in the accumulation of thick, sticky mucus in the airways, which results in chronic, life-long bacterial biofilm infections that are difficult to clear with antibiotics. Pseudomonas aeruginosa lung infection is correlated with worsening lung disease and P. aeruginosa transitions to an antibiotic tolerant state during chronic infections. Tobramycin is an aminoglycoside currently used to combat lung infections in individuals with CF. While tobramycin is effective at eradicating P. aeruginosa in the airways of young patients, it is unable to completely clear the chronic P. aeruginosa infections in older patients. A recent report showed that co-addition of tobramycin and mannitol enhanced killing of P. aeruginosa grown in vitro as a biofilm on an abiotic surface. Here we employed a model system of bacterial biofilms formed on the surface of CF-derived airway cells to determine if mannitol would enhance the antibacterial activity of tobramycin against P. aeruginosa grown on a more clinically relevant surface. Using this model system, which allows the growth of robust biofilms with high-level antibiotic tolerance analogous to in vivo biofilms, we were unable to find evidence for enhanced antibacterial activity of tobramycin with the addition of mannitol, supporting the observation that this type of co-treatment failed to reduce the P. aeruginosa bacterial load in a clinical setting.  相似文献   
2.
3.
Alkaptonuria (AKU) is a disease caused by a deficient homogentisate 1,2-dioxygenase activity leading to systemic accumulation of homogentisic acid (HGA), that forms a melanin-like polymer that progressively deposits onto connective tissues causing a pigmentation called “ochronosis” and tissue degeneration. The effects of AKU and ochronotic pigment on the biomechanical properties of articular cartilage need further investigation. To this aim, AKU cartilage was studied using thermal (thermogravimetry and differential scanning calorimetry) and rheological analysis. We found that AKU cartilage had a doubled mesopore radius compared to healthy cartilage. Since the mesoporous structure is the main responsible for maintaining a correct hydrostatic pressure and tissue homoeostasis, drastic changes of thermal and rheological parameters were found in AKU. In particular, AKU tissue lost its capability to enhance chondrocytes metabolism (decreased heat capacity) and hence the production of proteoglycans. A drastic increase in stiffness and decrease in dissipative and lubricant role ensued in AKU cartilage. Multiphoton and scanning electron microscopies revealed destruction of cell–matrix microstructure and disruption of the superficial layer. Such observations on AKU specimens were confirmed in HGA-treated healthy cartilage, indicating that HGA is the toxic responsible of morphological and mechanical alterations of cartilage in AKU.  相似文献   
4.
The role of abscisic acid in the ripening of grapes   总被引:1,自引:0,他引:1  
Ripening in grapes ( Vitis vinifera L. cv. Thompson seedless) was accompanied by an increase in the levels of sucrose, glucose and fructose and a decrease in the levels of acids. The activity of glucose-6-phosphatase and fructose-l–6-bisphospbatase was lower in sweet grapes as compared to sour ones. Abscisic acid (10−6 M) stimulated the gluconeogenic process in sour grapes. The levels of some gluconeogenic enzymes were also elevated in its presence. Cyclohexitnide (0.036–1.8 mM) nullified the abscisic acid effect, suggesting that this effect involves de novo protein synthesis. The incorporation of [14C]-leucine into proteins was enhanced about 80% by abscisic acid, confirming that abscisic acid promoted protein synthesis. Again, cycloheximide blocked the hormone mediated increase in the incorporation of radioactivity into proteins. The results indicate that one of the factors for sourness in certain mature ripe grapes may be that abscisic acid is not available.  相似文献   
5.
6.
Insulin-like growth factors (IGFs) are key regulators of development, growth, and longevity. In most vertebrate species including humans, there is one IGF-1 gene and one IGF-2 gene. Here we report the identification and functional characterization of 4 distinct IGF genes (termed as igf-1a, -1b, -2a, and -2b) in zebrafish. These genes encode 4 structurally distinct and functional IGF peptides. IGF-1a and IGF-2a mRNAs were detected in multiple tissues in adult fish. IGF-1b mRNA was detected only in the gonad and IGF-2b mRNA only in the liver. Functional analysis showed that all 4 IGFs caused similar developmental defects but with different potencies. Many of these embryos had fully or partially duplicated notochords, suggesting that an excess of IGF signaling causes defects in the midline formation and an expansion of the notochord. IGF-2a, the most potent IGF, was analyzed in depth. IGF-2a expression caused defects in the midline formation and expansion of the notochord but it did not alter the anterior neural patterning. These results not only provide new insights into the functional conservation and divergence of the multiple igf genes but also reveal a novel role of IGF signaling in midline formation and notochord development in a vertebrate model.  相似文献   
7.
Alpha‐ketoglutarate is a key metabolic intermediate at the crossroads of carbon and nitrogen metabolism, whose fate is tightly regulated. In mycobacteria the protein GarA regulates the tricarboxylic acid cycle and glutamate synthesis by direct binding and regulation of three enzymes that use α‐ketoglutarate. GarA, in turn, is thought to be regulated via phosphorylation by protein kinase G and other kinases. We have investigated the requirement for GarA for metabolic regulation during growth in vitro and in macrophages. GarA was found to be essential to Mycobacterium tuberculosis, but dispensable in non‐pathogenic Mycobacterium smegmatis. Disruption of garA caused a distinctive, nutrient‐dependent phenotype, fitting with its proposed role in regulating glutamate metabolism. The data underline the importance of the TCA cycle and the balance with glutamate synthesis in M. tuberculosis and reveal vulnerability to disruption of these pathways.  相似文献   
8.
Summary A practical procedure has been developed for the chemoselective microbial hydrolysis of aromatic dicarboxylic esters to give the corresponding monoesters, using cellular lysate and whole cell of Brevibacterium imperiale B222. The produced monoesters can be transformed into hydroxyacids, useful intermediates in the synthesis of polyesters.  相似文献   
9.
Mutants of Bacillus amyloliquefaciens resistant to at least 10 micrograms/ml of tunicamycin were isolated and shown to be pleiotropic. The mutants were more resistant to streptomycin, chloramphenicol, kanamycin and neomycin than was the parent strain but less resistant to penicillin G and tetracycline. They were more autolytic, presumably due to an altered cell wall. The mutants produced reduced levels of amylase, penicillinase and both metal and serine protease besides having an enhanced sporulation frequency and being more motile.  相似文献   
10.
Glycosylated α-dystroglycan provides an essential link between extracellular matrix proteins, like laminin, and the cellular cytoskeleton via the dystrophin-glycoprotein complex. In secondary dystroglycanopathy muscular dystrophy, glycosylation abnormalities disrupt a complex O-mannose glycan necessary for muscle structural integrity and signaling. Fktn-deficient dystroglycanopathy mice develop moderate to severe muscular dystrophy with skeletal muscle developmental and/or regeneration defects. To gain insight into the role of glycosylated α-dystroglycan in these processes, we performed muscle fiber typing in young (2, 4 and 8 week old) and regenerated muscle. In mice with Fktn disruption during skeletal muscle specification (Myf5/Fktn KO), newly regenerated fibers (embryonic myosin heavy chain positive) peaked at 4 weeks old, while total regenerated fibers (centrally nucleated) were highest at 8 weeks old in tibialis anterior (TA) and iliopsoas, indicating peak degeneration/regeneration activity around 4 weeks of age. In contrast, mature fiber type specification at 2, 4 and 8 weeks old was relatively unchanged. Fourteen days after necrotic toxin-induced injury, there was a divergence in muscle fiber types between Myf5/Fktn KO (skeletal-muscle specific) and whole animal knockout induced with tamoxifen post-development (Tam/Fktn KO) despite equivalent time after gene deletion. Notably, Tam/Fktn KO retained higher levels of embryonic myosin heavy chain expression after injury, suggesting a delay or abnormality in differentiation programs. In mature fiber type specification post-injury, there were significant interactions between genotype and toxin parameters for type 1, 2a, and 2x fibers, and a difference between Myf5/Fktn and Tam/Fktn study groups in type 2b fibers. These data suggest that functionally glycosylated α-dystroglycan has a unique role in muscle regeneration and may influence fiber type specification post-injury.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号