首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 268 毫秒
1.
Angiotensin II (Ang II) is a main pathophysiological culprit peptide for hypertension and atherosclerosis by causing vascular smooth muscle cell (VSMC) proliferation and migration. Exendin-4, a glucagon-like peptide-1 (GLP-1) receptor agonist, is currently used for the treatment of type-2 diabetes, and is believed to have beneficial effects for cardiovascular diseases. However, the vascular protective mechanisms of GLP-1 receptor agonists remain largely unexplained. In the present study, we examined the effect of exendin-4 on Ang II-induced proliferation and migration of cultured rat aortic smooth muscle cells (RASMC). The major findings of the present study are as follows: (1) Ang II caused a phenotypic switch of RASMC from contractile type to synthetic proliferative type cells; (2) Ang II caused concentration-dependent RASMC proliferation, which was significantly inhibited by the pretreatment with exendin-4; (3) Ang II caused concentration-dependent RASMC migration, which was effectively inhibited by the pretreatment with exendin-4; (4) exendin-4 inhibited Ang II-induced phosphorylation of ERK1/2 and JNK in a pre-incubation time-dependent manner; and (5) U0126 (an ERK1/2 kinase inhibitor) and SP600125 (a JNK inhibitor) also inhibited both RASMC proliferation and migration induced by Ang II stimulation. These results suggest that exendin-4 prevented Ang II-induced VSMC proliferation and migration through the inhibition of ERK1/2 and JNK phosphorylation caused by Ang II stimulation. This indicates that GLP-1 receptor agonists should be considered for use in the treatment of cardiovascular diseases in addition to their current use in the treatment of diabetes mellitus.  相似文献   

2.
The glucagon-like peptide-1 receptor (GLP-1R) agonist exendin-4 is a long-acting analog of GLP-1, which stimulates insulin secretion and is clinically used in the treatment of type 2 diabetes. Previous studies have demonstrated that GLP-1 agonists and analogs serve as cardioprotective factors in various conditions. Disturbances in calcium cycling are characteristic of heart failure (HF); therefore, the aim of this study was to investigate the effect of exendin-4 (a GLP-1 mimetic) on the regulation of calcium handling and to identify the underlying mechanisms in an HF rat model after myocardial infarction (MI). Rats underwent surgical ligation of the left anterior descending coronary artery or sham surgery prior to infusion with vehicle, exendin-4, or exendin-4 and exendin9-39 for 4 weeks. Exendin-4 treatment decreased MI size, suppressed chamber dilation, myocyte hypertrophy, and fibrosis and improved in vivo heart function in the rats subjected to MI. Exendin-4 resulted in an increase in circulating GLP-1 and GLP-1R in ventricular tissues. Additionally, exendin-4 activated the eNOS/cGMP/PKG signaling pathway and inhibited the Ca2+/calmodulin-dependent kinase II (CaMKII) pathways. Myocytes isolated from exendin-4-treated hearts displayed higher Ca2+ transients, higher sarcoplasmic reticulum Ca2+ content, and higher l-type Ca2+ current densities than MI hearts. Exendin-4 treatment restored the protein expression of sarcoplasmic reticulum Ca2+ uptake ATPase (SERCA2a), phosphorylated phospholamban (PLB) and Cav1.2 and decreased the levels of phosphorylated ryanodine receptor (RyR). Moreover, the favorable effects of exendin-4 were significantly inhibited by exendin9-39 (a GLP-1 receptor antagonist). Exendin-4 treatment of an HF rat model after MI inhibited cardiac and cardiomyocytes progressive remodeling. In addition, Ca2+ handling and its molecular modulation were also improved by exendin-4 treatment. The beneficial effects of exendin-4 on cardiac remodeling may be mediated through activation of the eNOS/cGMP/PKG pathway.  相似文献   

3.
Q Wei  YQ Sun  J Zhang 《Peptides》2012,37(1):18-24
Lipotoxicity plays an important role in the underlying mechanism of type 2 diabetes mellitus. Prolonged exposure of pancreatic β-cells to elevated concentrations of fatty acid is associated with β-cell apoptosis. Recently, glucagon-like peptide-1 (GLP-1) receptor agonists have been reported to have direct beneficial effects on β-cells, such as anti-apoptotic effects, increased β-cell mass, and improvement of β-cell function. The mechanism of GLP-1 receptor agonists' protection of pancreatic β-cells against lipotoxicity is not completely understood. We investigated whether the GLP-1 receptor agonist exendin-4 promoted cell survival and attenuated palmitate-induced apoptosis in murine pancreatic β-cells (MIN6). Exposure of MIN6 cells to palmitate (0.4mM) for 24h caused a significant increase in cell apoptosis, which was inhibited by exendin-4. Exposure of MIN6 cells to exendin-4 caused rapid activation of protein kinase B (PKB) under lipotoxic conditions. Furthermore, LY294002, a PI3K inhibitor, abolished the anti-lipotoxic effect of exendin-4 on MIN6 cells. Exendin-4 also inhibited the mitochondrial pathway of apoptosis and down-regulated Bax in MIN6 cells. Exendin-4 enhanced glucose-stimulated insulin secretion in the presence of palmitate. Our findings suggest that exendin-4 may prevent lipotoxicity-induced apoptosis in MIN6 cells through activation of PKB and inhibition of the mitochondrial pathway.  相似文献   

4.
Lee J  Hong SW  Chae SW  Kim DH  Choi JH  Bae JC  Park SE  Rhee EJ  Park CY  Oh KW  Park SW  Kim SW  Lee WY 《PloS one》2012,7(2):e31394
The effects of exendin-4 on Sirt1 expression as a mechanism of reducing fatty liver have not been previously reported. Therefore, we investigated whether the beneficial effects of exendin-4 treatment on fatty liver are mediated via Sirt1 in high-fat (HF) diet-induced obese C57BL/6J mice and related cell culture models. Exendin-4 treatment decreased body weight, serum free fatty acid (FA), and triglyceride levels in HF-induced obese C57BL/6J mice. Histological analysis showed that exendin-4 reversed HF-induced hepatic accumulation of lipids and inflammation. Exendin-4 treatment increased mRNA and protein expression of Sirt1 and its downstream factor, AMPK, in vivo and also induced genes associated with FA oxidation and glucose metabolism. In addition, a significant increase in the hepatic expression of Lkb1 and Nampt mRNA was observed in exendin-4-treated groups. We also observed increased expression of phospho-Foxo1 and GLUT2, which are involved in hepatic glucose metabolism. In HepG2 and Huh7 cells, mRNA and protein expressions of GLP-1R were increased by exendin-4 treatment in a dose-dependent manner. Exendin-4 enhanced protein expression of Sirt1 and phospho-AMPKα in HepG2 cells treated with 0.4 mM palmitic acid. We also found that Sirt1 was an upstream regulator of AMPK in hepatocytes. A novel finding of this study was the observation that expression of GLP-1R is proportional to exendin-4 concentration and exendin-4 could attenuate fatty liver through activation of Sirt1.  相似文献   

5.
Exendin-4, like GLP-1, is insulinotropic, antidiabetic and glucoregulatory among other properties, which are thought to be exerted through the pancreatic GLP-1 receptor; exendin-4 is also an agonist of the GLP-1 stimulatory action upon liver and muscle glucose metabolism, where GLP-1 receptor is distinct from that in the pancreas. We investigated the action of prolonged treatment with exendin-4 upon glucose transport parameters in skeletal muscle and liver of normal rats and streptozotocin-induced type 2 diabetic rats (T2D). Muscle of T2D showed lower than normal glucose transport; exendin-4 did not modify the value in normal but normalized that in the T2D; unlike previously detected with GLP-1, no apparent modification was observed in GLUT-4 expression in either group after exendin-4, except for an increased GLUT-4 protein in normal rats. Yet, exendin-4 significantly stimulated liver GLUT-2-mRNA and -protein in T2D and normal rats, the effect upon GLUT-2-protein in T2D being higher than that in normal animals; this was accompanied by a normalizing action of exendin-4 upon the lower than normal liver glycogen in T2D rats. These data suggest that the liver may represent at least one of the major target organs for exendin-4 to exert its plasma lowering effect in diabetic state.  相似文献   

6.
Exendin-4 is a 39 amino acid peptide isolated from salivary secretions of Gila monster (Heloderma suspectum). It shows 53% sequence similarity to glucagon-like peptide-1 (GLP-1), which is evaluated for the regulation of plasma glucose in type 2 diabetes. Exendin-4 is a potent and long-acting agonist of GLP-1 receptor. In the present study, the exendin-4 gene obtained by PCR with an enterokinase site at N-terminus and a termination codon at C-terminus was expressed in Escherichia coli strain BL21 (DE3) harboring pET32a(+). The fusion protein was purified by chromatography on Ni-NTA-agarose column. Recombinant exendin-4 was obtained by enterokinase cleavage of the fusion protein and subsequent purification. The yield of recombinant exendin-4 was 3.15mg/10g bacteria. The obtained recombinant exendin-4 shows glucose-lowering action in vivo.  相似文献   

7.
Perturbation of endoplasmic reticulum (ER) homeostasis impairs insulin biosynthesis, beta cell survival, and glucose homeostasis. We show that a murine model of diabetes is associated with the development of ER stress in beta cells and that treatment with the GLP-1R agonist exendin-4 significantly reduced biochemical markers of islet ER stress in vivo. Exendin-4 attenuated translational downregulation of insulin and improved cell survival in purified rat beta cells and in INS-1 cells following induction of ER stress in vitro. GLP-1R agonists significantly potentiated the induction of ATF-4 by ER stress and accelerated recovery from ER stress-mediated translational repression in INS-1 beta cells in a PKA-dependent manner. The effects of exendin-4 on the induction of ATF-4 were mediated via enhancement of ER stress-stimulated ATF-4 translation. Moreover, exendin-4 reduced ER stress-associated beta cell death in a PKA-dependent manner. These findings demonstrate that GLP-1R signaling directly modulates the ER stress response leading to promotion of beta cell adaptation and survival.  相似文献   

8.
Exendin-4, a 39 amino acid peptide originally isolated from the oral secretions of the lizard Heloderma suspectum, has been shown to share certain activities with glucagon-like-peptide-1 (GLP-1), a 30 amino acid peptide. We have determined the structuring preferences of exendin-4 and GLP-1 by NMR in both the solution and dodecylphosphocholine (DPC) micelle-associated states. Based on both chemical shift deviations and the pattern of intermediate range NOEs, both peptides display significant helicity from residue 7 to residue 28 with greater fraying at the N-terminus. Thornton and Gorenstein [(1994) Biochemistry 33, 3532-3539] reported that the presence of a flexible, helix-destabilizing, glycine at residue 16 in GLP-1 was an important feature for membrane and receptor binding. Exendin-4 has a helix-favoring glutamate as residue 16. In the micelle-associated state, NMR data indicate that GLP-1 is less helical than exendin-4 due to the presence of Gly16; chemical shift deviations along the peptide sequence suggest that Gly16 serves as an N-cap for a second, more persistent, helix. In 30 vol-% trifluoroethanol (TFE), a single continuous helix is evident in a significant fraction of the GLP-1 conformers present. Exendin-4 has a more regular and less fluxional helix in both media and displays stable tertiary structure in the solution state. In the micelle-bound state of exendin-4, a single helix (residues 11-27) is observed with residues 31-39 completely disordered and undergoing rapid segmental motion. In aqueous fluoroalcohol or aqueous glycol, the Leu21-Pro38 span of exendin-4 forms a compact tertiary fold (the Trp-cage) which shields the side chain of Trp25 from solvent exposure and produces ring current shifts as large as 3 ppm. This tertiary structure is partially populated in water and fully populated in aqueous TFE. The Leu21-Pro38 segment of exendin-4 may be the smallest protein-like folding unit observed to date. When the Trp-cage forms, fraying of the exendin-4 helix occurs exclusively from the N-terminus; backbone NHs for the C-terminal residues of the helix display H/D exchange protection factors as large as 10(5) at 9 degrees C. In contrast, no tertiary structure is evident when exendin-4 binds to DPC micelles. An energetically favorable insertion of the tryptophan ring into the DPC micelle is suggested as the basis for this change. With the exception of exendin-4 in media containing fluoro alcohol cosolvents, NMR structure ensembles generated from the NOE data do not fully reflect the conformational averaging present in these systems. Secondary structure definition from chemical shift deviations may be the most appropriate treatment for peptides that lack tertiary structure.  相似文献   

9.
GLP-1 (glucagon-like peptide-1) is an incretin released from intestinal L-cells in response to food intake. Activation of the GLP-1 receptor potentiates the synthesis and release of insulin from pancreatic β-cells in a glucose-dependent manner. The GLP-1 receptor belongs to class B of the G-protein-coupled receptors, a subfamily characterized by a large N-terminal extracellular ligand binding domain. Exendin-4 and GLP-1 are 50% identical, and exendin-4 is a full agonist with similar affinity and potency for the GLP-1 receptor. We recently solved the crystal structure of the GLP-1 receptor extracellular domain in complex with the competitive antagonist exendin-4(9–39). Interestingly, the isolated extracellular domain binds exendin-4 with much higher affinity than the endogenous agonist GLP-1. Here, we have solved the crystal structure of the extracellular domain in complex with GLP-1 to 2.1 Åresolution. The structure shows that important hydrophobic ligand-receptor interactions are conserved in agonist- and antagonist-bound forms of the extracellular domain, but certain residues in the ligand-binding site adopt a GLP-1-specific conformation. GLP-1 is a kinked but continuous α-helix from Thr13 to Val33 when bound to the extracellular domain. We supplemented the crystal structure with site-directed mutagenesis to link the structural information of the isolated extracellular domain with the binding properties of the full-length receptor. The data support the existence of differences in the binding modes of GLP-1 and exendin-4 on the full-length GLP-1 receptor.  相似文献   

10.
Protective effects of exendin-4 (glucagon-like peptide-1 -GLP-1- receptor agonist) and des-fluoro-sitagliptin (dipeptidyl peptidase-4 inhibitor) on fructose-induced hepatic disturbances were evaluated in prediabetic rats. Complementary, a possible direct effect of exendin-4 in human hepatoblastoma-derived cell line HepG2 incubated with fructose in presence/absence of exendin-9-39 (GLP-1 receptor antagonist) was investigated. In vivo, after 21 days of fructose rich diet, we determined: glycemia, insulinemia, and triglyceridemia; hepatic fructokinase, AMP-deaminase, and G-6-P dehydrogenase (G-6-P DH) activities; carbohydrate-responsive element-binding protein (ChREBP) expression; triglyceride content and lipogenic gene expression (glycerol-3-phosphate acyltransferase -GPAT-, fatty acid synthase -FAS-, sterol regulatory element-binding protein-1c -SREBP-1c); oxidative stress and inflammatory markers expression. In HepG2 cells we measured fructokinase activity and triglyceride content. Hypertriglyceridemia, hyperinsulinemia, enhanced liver fructokinase, AMP-deaminase, and G-6-P DH activities, increased ChREBP and lipogenic genes expression, enhanced triglyceride level, oxidative stress and inflammatory markers recorded in fructose fed animals, were prevented by co-administration of either exendin-4 or des-fluoro-sitagliptin. Exendin-4 prevented fructose-induced increase in fructokinase activity and triglyceride contain in HepG2 cells. These effects were blunted co-incubating with exendin-9-39. The results demonstrated for the first time that exendin-4/des-fluro-sitagliptin prevented fructose-induced endocrine-metabolic oxidative stress and inflammatory changes probably acting on the purine degradation pathway. Exendin 9–39 blunted in vitro protective exendin-4 effects, thereby suggesting a direct effect of this compound on hepatocytes through GLP-1 receptor. Direct effect on fructokinase and AMP-deaminase activities, with a key role in the pathogenesis of liver dysfunction induced by fructose, suggests purine degradation pathway constitute a potential therapeutic objective for GLP-1 receptor agonists.  相似文献   

11.
Glucagon-like peptide-1 receptor signaling modulates beta cell apoptosis   总被引:30,自引:0,他引:30  
Glucagon-like peptide-1 (GLP-1) stimulates insulin secretion and augments beta cell mass via activation of beta cell proliferation and islet neogenesis. We examined whether GLP-1 receptor signaling modifies the cellular susceptibility to apoptosis. Mice administered streptozotocin (STZ), an agent known to induce beta cell apoptosis, exhibit sustained improvement in glycemic control and increased levels of plasma insulin with concomitant administration of the GLP-1 agonist exendin-4 (Ex-4). Blood glucose remained significantly lower for weeks after cessation of exendin-4. STZ induced beta cell apoptosis, which was significantly reduced by co-administration of Ex-4. Conversely, mice with a targeted disruption of the GLP-1 receptor gene exhibited increased beta cell apoptosis after STZ administration. Exendin-4 directly reduced cytokine-induced apoptosis in purified rat beta cells exposed to interleukin 1beta, tumor necrosis fator alpha, and interferon gamma in vitro. Furthermore, Ex-4-treated BHK-GLP-1R cells exhibited significantly increased cell viability, reduced caspase activity, and decreased cleavage of beta-catenin after treatment with cycloheximide in vitro. These findings demonstrate that GLP-1 receptor signaling directly modifies the susceptibility to apoptotic injury, and provides a new potential mechanism linking GLP-1 receptor activation to preservation or enhancement of beta cell mass in vivo.  相似文献   

12.
Exendin-4, a peptide analogue of glucagon-like peptide-1 (GLP-1), has been developed for treatment of type 2 diabetes. Herein, the secretive exendin-4 fusion protein, expressed by methanol induction in Pichia pastoris system, was purified to homogeneity by chromatography followed by enterokinase cleavage of the fusion protein and subsequent purification of the recombinant exendin-4. Purity of the recombinant exendin-4 was 95.6%. Bioactivity assay revealed that it had glucose-lowering and insulin-releasing action in vivo.  相似文献   

13.
Exendin-4 is a long-acting potent agonist of the glucagon-like peptide 1 (GLP-1) receptor and may be useful in the treatment of type 2 diabetes and obesity. We examined the effects of an intravenous infusion of exendin-4 (0.05 pmol. kg(-1). min(-1)) compared with a control saline infusion in healthy volunteers. Exendin-4 reduced fasting plasma glucose levels and reduced the peak change of postprandial glucose from baseline (exendin-4, 1.5 +/- 0.3 vs. saline, 2.2 +/- 0.3 mmol/l, P < 0.05). Gastric emptying was delayed, as measured by the paracetamol absorption method. Volunteers consumed 19% fewer calories at a free-choice buffet lunch with exendin-4 (exendin-4, 867 +/- 79 vs. saline 1,075 +/- 93 kcal, P = 0.012), without reported side effects. Thus our results are in accord with the possibility that exendin-4 may be a potential treatment for type 2 diabetes, particularly for obese patients, because it acts to reduce plasma glucose at least partly by a delay in gastric emptying, as well as by reducing calorie intake.  相似文献   

14.
Li Y  Zheng X  Tang L  Xu W  Gong M 《Peptides》2011,32(6):1303-1312
The multiple physiological characterizations of glucagon-like peptide-1 (GLP-1) make it a promising drug candidate for the therapy of type 2 diabetes. However, the half-life of GLP-1 is short in vivo due to degradation by dipeptidyl peptidase-IV (DPP-IV) and renal clearance. This indicates that the stabilization of GLP-1 is critical for its utility in drug development. In this study, we developed a cluster of GLP-1 mutants containing an inter-disulfide bond that is predicted to increase the half-life of GLP-1 in vivo. Exendin-4 was also mutated with a disulfide bond similar to the GLP-1 analogs. In this study, the binding capacities of the mutants were determined, the stabilities of the mutants were investigated and the physiological functions of the mutants were compared with those of wild-type GLP-1 and exendin-4 in animals. The results indicated that the mutants remarkably raised the half-life in vivo; they also showed better glucose tolerance and higher HbA1c reduction than GLP-1 and exendin-4 in rodents. These results suggest that GLP-1 and exendin-4 mutants containing disulfide bonds might be utilized as possible potent anti-diabetic drugs in the treatment of type 2 diabetes mellitus.  相似文献   

15.
Exendin-4, a stable GLP-1 receptor agonist, has been shown to stimulate insulin secretion. It has also been shown to exert beneficial effects on endothelial function that are independent of its glycemic effects. The molecular mechanisms underlying the protective actions of exendin-4 against diabetic glucolipotoxicity in endothelial cells largely remain elusive. We have investigated the long-term in vitro effect of palmitate or high glucose (simulating the diabetic milieu) and the role of exendin-4 on gene expression in human coronary artery endothelial cells. Gene expression profiling in combination with Western blotting revealed that exendin-4 regulates expression of a number of genes involved in angiogenesis, inflammation and thrombogenesis under glucolipotoxic conditions. Our results indicate that exendin-4 may improve endothelial cell function in diabetes through regulating expression of the genes, whose expression was disrupted by glucolipotoxicity. As endothelial dysfunction appears to be an early indicator of vascular damage, and predicts both progression of atherosclerosis and incidence of cardiovascular events, exendin-4 and possibly other incretin-based strategies may confer additional cardiovascular benefit beyond improved glycemic control.  相似文献   

16.
A gut insulinotropic peptide, glucagon-like peptide-1 (GLP-1), when given continuously subcutaneously, has been shown to be an effective agent to treat type 2 diabetes. Because of inactivation by dipeptidyl peptidase IV (DPP IV), it has a very short half-life (90-120 s), hence the need for continuous administration. Exendin-4 is an agonist of the GLP-1 receptor. It is not a substrate for DPP IV, and we previously demonstrated that intravenous administration has potent insulinotropic properties in type 2 diabetic volunteers. We evaluated the efficacy of bolus subcutaneous exendin-4 in insulin-naive type 2 diabetic volunteers. Ten patients aged 44-72 yr with mean fasting glucose levels of 11.4 +/- 0.9 mmol/l were enrolled, and daily or twice-daily bolus subcutaneous exendin-4 was self-administered for 1 mo. Glycosylated hemoglobin, multiple daily capillary blood glucose, beta-cell sensitivity to glucose, and peripheral tissue sensitivity to insulin were compared before and after treatment. The greatest decline in capillary blood glucose was seen before bed, with a drop from 15.5 to 9.2 mmol/l (P < 0.0001). Glycosylated hemoglobin improved significantly with treatment, from 9.1 to 8.3% (P = 0.009). beta-Cell sensitivity to glucose was improved, as assessed by C-peptide levels during a hyperglycemic clamp. No significant adverse effects were noted or reported. Our data suggest that, even with this short duration of therapy, exendin-4 treatment had a significant effect on glucose homeostasis.  相似文献   

17.
Exendin-4 is a natural, 39-residue peptide first isolated from the salivary secretions of a Gila Monster (Heloderma suspectum) that has some pharmacological properties similar to glucagon-like-peptide-1 (GLP-1). This paper reports differences in the structural preferences of these two peptides. For GLP-1 in aqueous buffer (pH 3.5 or 5.9), the concentration dependence of circular dichroism spectra suggests that substantial helicity results only as a consequence of helix bundle formation. In contrast, exendin-4 is significantly helical in aqueous buffer even at the lowest concentration examined (2.3 microM). The pH dependence of the helical signal for exendin-4 indicates that helicity is enhanced by a more favorable sequence alignment of oppositely charged sidechains. Both peptides become more helical upon addition of either lipid micelles or fluoroalcohols. The stabilities of the helices were assessed from the thermal gradient of ellipticity (partial differential theta(221)/partial differential T values); on this basis, the exendin helix does not melt appreciably until temperatures significantly above ambient. The extent of helix formation for exendin-4 in aqueous buffer (and the thermal stability of the resulting helix) suggests the presence of a stable helix-capping interaction which was localized to the C-terminal segment by NMR studies of NH exchange protection. Solvent effects on the thermal stability of the helix indicate that the C-terminal capping interaction is hydrophobic in nature. The absence of this C-capping interaction and the presence of a flexible, helix-destabilizing glycine at residue 16 in GLP-1 are the likely causes of the greater fragility of the monomeric helical state of GLP-1. The intramolecular hydrophobic clustering in exendin-4 also appears to decrease the extent of helical aggregate formation.  相似文献   

18.

Background

Nonalcoholic fatty liver disease (NAFLD) is a known outcome of hepatosteatosis. Free fatty acids (FFA) induce the unfolded protein response (UPR) or endoplasmic reticulum (ER) stress that may induce apoptosis. Recent data indicate ER stress to be a major player in the progression of fatty liver to more aggressive lesions. Autophagy on the other hand has been demonstrated to be protective against ER stress- induced cell death. We hypothesized that exendin-4 (GLP-1 analog) treatment of fat loaded hepatocytes can reduce steatosis by autophagy which leads to reduced ER stress-related hepatocyte apoptosis.

Methodology/Principal Findings

Primary human hepatocytes were loaded with saturated, cis- and trans-unsaturated fatty acids (palmitic, oleic and elaidic acid respectively). Steatosis, induced with all three fatty acids, was significantly resolved after exendin-4 treatment. Exendin-4 sustained levels of GRP78 expression in fat-loaded cells when compared to untreated fat-loaded cells alone. In contrast, CHOP (C/EBP homologous protein); the penultimate protein that leads to ER stress-related cell death was significantly decreased by exendin-4 in hepatocytes loaded with fatty acids. Finally, exendin-4 in fat loaded hepatocytes clearly promoted gene products associated with macroautophagy as measured by enhanced production of both Beclin-1 and LC3B-II, markers for autophagy; and visualized by transmission electron microscopy (TEM). Similar observations were made in mouse liver lysates after mice were fed with high fat high fructose diet and treated with a long acting GLP-1 receptor agonist, liraglutide.

Conclusions/Significance

GLP-1 proteins appear to protect hepatocytes from fatty acid-related death by prohibition of a dysfunctional ER stress response; and reduce fatty acid accumulation, by activation of both macro-and chaperone-mediated autophagy. These findings provide a novel role for GLP-1 proteins in halting the progression of more aggressive lesions from underlying steatosis in humans afflicted with NAFLD.  相似文献   

19.
To determine whether the glucagon-like peptide-1 receptor (GLP-1r) plays a role in the regulation of intestinal functional activity, we analyzed the distribution of the GLP-1r in mouse tissues and tested if tissues expressing the receptor respond to exendin-4 and exendin (9–39) amide, a GLP-1r agonist and antagonist respectively. In ileum, Glp1r mRNA level was two fold higher in extracts from epithelial cells than non-epithelial tissues. By immunohistochemistry, the receptor was localized to the mucosal cell layer of villi of ileum and colon, to the myenteric and submucosal plexus and to Paneth cells. Intravenous administration of exendin-4 to CD-1 mice induced expression of the immediate early gene c-fos in mucosal cells but not in cells of the enteric plexuses or in L cells of ileum. The induction of c-fos was inhibited by the voltage-gated sodium channel blocker tetrodotoxin. Exendin-4 also increased c-fos expression in ileal segments in vitro, suggesting that this action of the analog was independent of an extrinsic input. The induction of c-fos expression by exendin-4 was inhibited by exendin (9–39) amide, indicating that the action of exendin-4 was mediated by activation of the receptor. Our findings indicate that the GLP-1r is involved in ileal enterocyte and Paneth cell function, that the GLP-1 analog activates c-fos expression in the absence of an extrinsic input and that some of the actions of the receptor is/are mediated by voltage-gated Na channels.  相似文献   

20.
The hepatocytes express nerve growth factor (NGF) and its high affinity receptor tyrosine kinase A (TrkA). However, the link between NGF/TrkA system and hepatocyte proliferation in diabetic animals and the effects of exendin-4, a glucagon like peptide-1 (GLP-1) receptor agonist, on this system are not known. BALB/c male mice were divided into four groups. The first group was given citrate buffer only, the second group was administered exendin-4 alone, the third group received streptozotocin (STZ), and the fourth group was given both STZ and exendin-4. Exendin-4 (3 μg/kg) was administered by subcutaneous injection daily for 30 days after the animals were rendered diabetic by administration of STZ (200 mg/kg). With treatment of exendin-4 to the diabetic mice the following results were noted (i) NGF, TrkA and proliferating cell nuclear antigen positive hepatocytes were decreased; (ii) p75 neurotrophin receptor and caspase-3 positive hepatocyte could not be detected; (iii) liver alanine transaminase and aspartate transaminase activities, lipid peroxidation, protein carbonyl and myeloperoxidase levels were decreased; (iv) liver catalase, superoxide dismutase, glutathione peroxidase activities and glutathione levels were increased. These data suggest that exendin-4 might exerts its anti-proliferative action through blocking NGF/TrkA system and stimulating oxidative defense system in liver of diabetic mice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号