首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   187篇
  免费   11篇
  2022年   1篇
  2021年   4篇
  2020年   3篇
  2019年   4篇
  2018年   5篇
  2017年   9篇
  2016年   8篇
  2015年   14篇
  2014年   10篇
  2013年   21篇
  2012年   25篇
  2011年   14篇
  2010年   7篇
  2009年   6篇
  2008年   13篇
  2007年   9篇
  2006年   7篇
  2005年   8篇
  2004年   9篇
  2003年   12篇
  2002年   3篇
  1999年   1篇
  1998年   2篇
  1988年   1篇
  1986年   1篇
  1976年   1篇
排序方式: 共有198条查询结果,搜索用时 218 毫秒
1.
2.
α-Amylase, a major pancreatic protein and starch hydrolase, is essential for energy acquisition. Mammalian pancreatic α-amylase binds specifically to glycoprotein N-glycans in the brush-border membrane to activate starch digestion, whereas it significantly inhibits glucose uptake by Na+/glucose cotransporter 1 (SGLT1) at high concentrations (Asanuma-Date, K., Hirano, Y., Le, N., Sano, K., Kawasaki, N., Hashii, N., Hiruta, Y., Nakayama, K., Umemura, M., Ishikawa, K., Sakagami, H., and Ogawa, H. (2012) Functional regulation of sugar assimilation by N-glycan-specific interaction of pancreatic α-amylase with glycoproteins of duodenal brush border membrane. J. Biol. Chem. 287, 23104–23118). However, how the inhibition is stopped was unknown. Here, we show a new mechanism for the regulation of intestinal glucose absorption. Immunohistochemistry revealed that α-amylase in the duodena of non-fasted, but not fasted, pigs was internalized from the pancreatic fluid and immunostained. We demonstrated that after N-glycan binding, pancreatic α-amylase underwent internalization into lysosomes in a process that was inhibited by α-mannoside. The internalized α-amylase was degraded, showing low enzymatic activity and molecular weight at the basolateral membrane. In a human intestinal Caco-2 cell line, Alexa Fluor 488-labeled pancreatic α-amylase bound to the cytomembrane was transported to lysosomes through the endocytic pathway and then disappeared, suggesting degradation. Our findings indicate that N-glycan recognition by α-amylase protects enterocytes against a sudden increase in glucose concentration and restores glucose uptake by gradual internalization, which homeostatically controls the postprandial blood glucose level. The internalization of α-amylase may also enhance the supply of amino acids required for the high turnover of small intestine epithelial cells. This study provides novel and significant insights into the control of blood sugar during the absorption stage in the intestine.  相似文献   
3.
Polycomb repressive complex 1 (PRC1) plays an essential role in the epigenetic repression of gene expression during development and cellular differentiation via multiple effector mechanisms, including ubiquitination of H2A and chromatin compaction. However, whether it regulates the stepwise progression of adipogenesis is unknown. Here, we show that FBXL10/KDM2B is an anti-adipogenic factor that is up-regulated during the early phase of 3T3-L1 preadipocyte differentiation and in adipose tissue in a diet-induced model of obesity. Interestingly, inhibition of adipogenesis does not require the JmjC demethylase domain of FBXL10, but it does require the F-box and leucine-rich repeat domains, which we show recruit a noncanonical polycomb repressive complex 1 (PRC1) containing RING1B, SKP1, PCGF1, and BCOR. Knockdown of either RING1B or SKP1 prevented FBXL10-mediated repression of 3T3-L1 preadipocyte differentiation indicating that PRC1 formation mediates the inhibitory effect of FBXL10 on adipogenesis. Using ChIP-seq, we show that FBXL10 recruits RING1B to key specific genomic loci surrounding the key cell cycle and the adipogenic genes Cdk1, Uhrf1, Pparg1, and Pparg2 to repress adipogenesis. These results suggest that FBXL10 represses adipogenesis by targeting a noncanonical PRC1 complex to repress key genes (e.g. Pparg) that control conversion of pluripotent cells into the adipogenic lineage.  相似文献   
4.
5.
Environmental Biology of Fishes - Eel movement patterns have been frequently studied to learn about their movements within the fresh- and brackish waters of the same river before their spawning...  相似文献   
6.
7.
Heteromorphic sex-determining regions or mating-type loci can contain large regions of non-recombining sequence where selection operates under different constraints than in freely recombining autosomal regions. Detailed studies of these non-recombining regions can provide insights into how genes are gained and lost, and how genetic isolation is maintained between mating haplotypes or sex chromosomes. The Chlamydomonas reinhardtii mating-type locus (MT) is a complex polygenic region characterized by sequence rearrangements and suppressed recombination between its two haplotypes, MT+ and MT−. We used new sequence information to redefine the genetic contents of MT and found repeated translocations from autosomes as well as sexually controlled expression patterns for several newly identified genes. We examined sequence diversity of MT genes from wild isolates of C. reinhardtii to investigate the impacts of recombination suppression. Our population data revealed two previously unreported types of genetic exchange in Chlamydomonas MT—gene conversion in the rearranged domains, and crossover exchanges in flanking domains—both of which contribute to maintenance of genetic homogeneity between haplotypes. To investigate the cause of blocked recombination in MT we assessed recombination rates in crosses where the parents were homozygous at MT. While normal recombination was restored in MT+×MT+ crosses, it was still suppressed in MT−×MT− crosses. These data revealed an underlying asymmetry in the two MT haplotypes and suggest that sequence rearrangements are insufficient to fully account for recombination suppression. Together our findings reveal new evolutionary dynamics for mating loci and have implications for the evolution of heteromorphic sex chromosomes and other non-recombining genomic regions.  相似文献   
8.
BacteroidesPrevotella group is one of the most promising targets for detecting fecal contamination in water environments, principally due to its host-specific distributions and high concentrations in feces of warm-blooded animals. We developed real-time PCR assays for quantifying chicken/duck-, chicken-, and duck-associated BacteroidesPrevotella 16S rRNA genetic markers (Chicken/Duck-Bac, Chicken-Bac, and Duck-Bac). A reference collection of DNA extracts from 143 individual fecal samples and wastewater treatment plant influent was tested by the newly established markers. The quantification limits of Chicken/Duck-Bac, Chicken-Bac, and Duck-Bac markers in environmental water were 54, 57, and 12 copies/reaction, respectively. It was possible to detect possible fecal contaminations from wild ducks in environmental water with the constructed genetic marker assays, even though the density of total coliforms in the identical water samples was below the detection limit. Chicken/Duck-Bac marker was amplified from feces of wild duck and chicken with the positive ratio of 96 and 61 %, respectively, and no cross-reaction was observed for the other animal feces. Chicken-Bac marker was detected from 70 % of chicken feces, while detected from 39 % of cow feces, 8.3 % of pig feces, and 12 % of swan feces. Duck-Bac marker was detected from 85 % of wild duck feces and cross-reacted with 31 % of cow feces. These levels of detection specificity are common in avian-associated genetic markers previously proposed, which implies that there is a practical limitation in the independent application of avian-associated BacteroidesPrevotella 16S rRNA genetic markers and a combination with other fecal contamination markers is preferable for detecting fecal contamination in water environments.  相似文献   
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号