首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
3.
Methionine adenosyltransferase (MAT) is a critical biological enzyme and that can catalyze L-met and ATP to form S-adenosylmethionine (SAM), which is acted as a biological methyl donor in transmethylation reactions involving histone methylation. However, the regulatory effect of methionine adenosyltransferase2A (MAT2A) and its associated methyltransferase activity on adipogenesis is still unclear. In this study, we investigate the effect of MAT2A on adipogenesis and its potential mechanism on histone methylation during porcine preadipocyte differentiation. We demonstrated that overexpression of MAT2A promoted lipid accumulation and significantly up-regulated the levels of adipogenic marker genes including PPARγ, SREBP-1c, and aP2. Whereas, knockdown of MAT2A or inhibition MATII enzyme activity inhibited lipid accumulation and down-regulated the expression of the above-mentioned genes. Mechanistic studies revealed that MAT2A interacted with histone-lysine N-methyltransferase Ezh2 and was recruited to Wnt10b promoter to repress its expression by promoting H3K27 methylation. Additionally, MAT2A interacted with MafK protein and was recruited to MARE element at Wnt10b gene. The catalytic activity of MAT2A as well as its interacting factor-MAT2B, was required for Wnt10b repression and supplying SAM for methyltransferases. Moreover, MAT2A suppressed Wnt10b expression and further inhibited Wnt/β-catenin signaling to promote adipogenesis.  相似文献   

4.
5.
Prostaglandin (PG) F suppresses adipocyte differentiation by inhibiting the function of peroxisome proliferator-activated receptor γ. However, PGF synthase (PGFS) in adipocytes remains to be identified. Here, we studied the expression of members of the aldo-keto reductase (AKR) 1B family acting as PGFS during adipogenesis of mouse 3T3-L1 cells. AKR1B3 mRNA was expressed in preadipocytes, and its level increased about 4-fold at day 1 after initiation of adipocyte differentiation, and then quickly decreased the following day to a level lower than that in the preadipocytes. In contrast, the mRNA levels of Akr1b8 and 1b10 were clearly lower than that level of Akr1b3 in preadipocytes and remained unchanged during adipogenesis. The transient increase in Akr1b3 during adipogenesis was also observed by Western blot analysis. The mRNA for the FP receptor, which is selective for PGF, was also expressed in preadipocytes. Its level increased about 2-fold within 1 h after the initiation of adipocyte differentiation and was maintained at almost the same level throughout adipocyte differentiation. The small interfering RNA for Akr1b3, but not for Akr1b8 or 1b10, suppressed PGF production and enhanced the expression of adipogenic genes such as peroxisome proliferator-activated receptor γ, fatty acid-binding protein 4 (aP2), and stearoyl-CoA desaturase. Moreover, an FP receptor agonist, Fluprostenol, suppressed the expression of those adipogenic genes in 3T3-L1 cells; whereas an FP receptor antagonist, AL-8810, efficiently inhibited the suppression of adipogenesis caused by the endogenous PGF. These results indicate that AKR1B3 acts as the PGFS in adipocytes and that AKR1B3-produced PGF suppressed adipocyte differentiation by acting through FP receptors.  相似文献   

6.
Previous microarray analyses revealed that LMO4 is expressed in 3T3-L1 preadipocytes, however, its roles in adipogenesis are unknown. In the present study, using RT-PCR sequencing and quantitative real-time RT-PCR, we confirmed that LMO4 gene is expressed in 3T3-L1 preadipocytes and its expression peaks at the early stage of 3T3-L1 preadipocyte differentiation. Further analyses showed that LMO4 knockdown decreased the proliferation of 3T3-L1 preadipocytes, and attenuated the differentiation of 3T3-L1 preadipocytes, as evidenced by reduced lipid accumulation and down-regulation of PPARγ gene expression. Collectively, our findings indicate that LMO4 is a novel modulator of adipogenesis.  相似文献   

7.
8.
Differentiation of adipocytes and their aggregation to adipose tissue are critical for mammalian growth and development. MicroRNAs (miRNAs) are a class of endogenous small non-coding RNAs that play important roles in adipogenesis and lipid metabolism. miR-128-3p may contribute to adipose tissue development according to the previous studies. However, the role of miR-128-3p in the process of preadipocyte differentiation and lipid metabolism is not yet understood. The purpose of this research was to investigate the biological function and molecular mechanism of miR-128-3p in 3T3-L1 cells. In the present study, we found that miR-128-3p was downregulated during the process of 3T3-L1 preadipocyte differentiation. Overexpression of miR-128-3p obstructed the expressions of adipogenic marker genes as well as the lipid droplets accumulation and triglyceride content, suggesting the importance of miR-128-3p for adipogenesis. Moreover, miR-128-3p could lead to the retardation of cell proliferation in 3T3-L1 preadipocytes. Further evidences showed that, as a negative regulator of adipogenesis, miR-128-3p could directly target peroxisome proliferator-activated receptor γ (Pparg) which resulted in the suppression of 3T3-L1 preadipocyte differentiation, and miR-128-3p could also bind with SERTA domain containing 2 (Sertad2) which drove triglyceride hydrolysis and lipolysis. In addition, inhibition of Sertad2 with siRNA displayed the same effects as overexpression of miR-128-3p. Our research demonstrated that miR-128-3p impeded 3T3-L1 adipogenesis by targeting Pparg and Sertad2, resulting in the obstruction of preadipocyte differentiation and promotion of lipolysis. Taken together, this study offers profound insight into the mechanism of miRNA-mediated adipogenesis and lipid metabolism.  相似文献   

9.
Nucleoredoxin (NRX) is a member of the thioredoxin family of proteins that controls redox homeostasis in cell. Redox homeostasis is a well-known regulator of cell differentiation into various tissue types. We found that NRX expression levels were higher in white adipose tissue of obese ob/ob mice and increased in the early adipogenic stage of 3T3-L1 preadipocyte differentiation. Knockdown of NRX decreased differentiation of 3T3-L1 cells, whereas overexpression increased differentiation. Adipose tissue-specific NRX transgenic mice showed increases in adipocyte size as well as number compared with WT mice. We further confirmed that the Wingless/int-1 class (Wnt)/β-catenin pathway was also involved in NRX-promoted adipogenesis, consistent with a previous report showing NRX regulation of this pathway. Genes involved in lipid metabolism were downregulated, whereas inflammatory genes, including those encoding macrophage markers, were significantly upregulated, likely contributing to the obesity in Adipo-NRX mice. Our results therefore suggest that NRX acts as a novel proadipogenic factor and controls obesity in vivo.  相似文献   

10.
11.
Signaling mediated by the mechanistic target of rapamycin (mTOR) is believed to play a critical and positive role in adipogenesis, based on pharmacological evidence and genetic manipulation of mTOR regulators and targets. However, there is no direct genetic evidence for an autonomous role of mTOR itself in preadipocyte differentiation. To seek such evidence, we employed a conditional knockdown approach to deplete mTOR in preadipocytes. Surprisingly, while knockdown of S6K1, a target of mTOR, impairs 3T3-L1 preadipocyte differentiation, reduction of mTOR levels leads to increased differentiation. This enhanced adipogenesis requires the remaining mTOR activity, as mTOR inhibitors abolish differentiation in the mTOR knockdown cells. We also found that mTOR knockdown elevates the levels of CCAAT/enhancer-binding protein α (C/EBPα) and peroxisome proliferator-activated receptor γ (PPARγ). Furthermore, partial reduction of mTOR levels alleviates inhibition of Akt by mTORC1 via IRS1, while at the same time maintaining its positive input through mTORC1 into the adipogenic program. The greater sensitivity of the IRS1-Akt pathway to mTOR levels provides a mechanism that explains the net outcome of enhanced adipogenesis through PPARγ upon mTOR knockdown. Our observations reveal an unexpected role of mTOR in suppressing adipogenesis and suggest that mTOR governs the homeostasis of the adipogenic process by modulating multiple signaling pathways.  相似文献   

12.
13.
14.
15.
Hydroxysafflor yellow A (HSYA), a main component of safflor yellow, has been demonstrated to prevent steroid-induced avascular necrosis of femoral head by inhibiting primary bone marrow-derived mesenchymal stromal cells adipogenic differentiation induced by steroid. In this study, we investigate the effect of HSYA on the proliferation and adipogenesis of mouse 3T3-L1 preadipocytes. The effects of HSYA on proliferation and differentiation of 3T3-L1 cells and its possible mechanism were studied by 3-(4,5-dimethylthiazol-2-yl) 2,5-diphenyl tetrazolium bromide spectrophotometry, Oil Red O staining, intracellular triglyceride assays, real-time quantitative RT-PCR, transient transfection and dual luciferase reporter gene methods. HSYA inhibited the proliferation of 3T3-L1 preadipocytes and cell viability greatly decreased in a dose and time dependent manner. HSYA (1 mg/l) notably reduced the amount of intracellular lipid and triglyceride content in adipocytes by 21.3 % (2.13 ± 0.36 vs 2.71 ± 0.40, P < 0.01) and 22.6 % (1.33 ± 0.07 vs 1.72 ± 0.07, P < 0.01) on days 8 following the differentiation, respectively. HSYA (1 mg/l) significantly increased hormone-sensitive lipase (HSL) mRNA expression and promoter activities by 2.4- and 1.55-fold, respectively (P < 0.01), in differentiated 3T3-L1 adipocytes. HSYA inhibits the proliferation and adipogenesis of 3T3-L1 preadipocytes. The inhibitory action of HYSA on adipogenesis may be due to the promotion of lipolytic-specific enzyme HSL expression by increasing HSL promoter activity.  相似文献   

16.
17.
Rehmannia glutinosa, a Traditional Chinese Medicine (TCM), has been used to increase physical strength. Here, we report that Rehmannia glutinosa extract (RE) inhibits adipocyte differentiation and adipogenesis. RE impairs differentiation of 3T3-L1 preadipocytes in a dose-dependent manner. At the molecular level, treatment with RE inhibits expression of the key adipocyte differentiation regulator C/EBPβ, as well as C/EBPα and the terminal marker protein 422/aP2, during differentiation of preadipocytes into adipocytes. Additionally, RE inhibits the mitotic clonal expansion (MCE) process of adipocyte differentiation, and RE prevents localization of C/EBPβ to the centromeres. RE also prevents high fat diet (HFD) induced weight gain and adiposity in rats. Taken together, our results indicate that Rehmannia glutinosa extract inhibits preadipocyte differentiation and adipogenesis in cultured cells and in rodent models of obesity.  相似文献   

18.
李欢  冯晋川  李贵林  王讯  李明洲  刘海峰 《遗传》2018,40(9):758-766
长链非编码RNA (long non-coding RNA, lncRNA)是一类长度大于200nt、没有长开放阅读框架但往往具有mRNA结构特征的RNA,可以在转录及转录后水平参与基因的表达调控。近年来,有研究证实lncRNA对脂肪生成具有重要作用。Lnc-RAP3位于小鼠(Mus musculus)17号染色体,其表达量在小鼠脂肪细胞分化前后呈现显著差异,但其具体的生物学功能尚不清楚。为探讨lnc-RAP3在小鼠3T3-L1前脂肪细胞成脂分化中的作用,本文首先构建了lnc-RAP3的真核表达载体pcDNA3.1-RAP3,利用脂质体将pcDNA3.1-RAP3和人工合成的lnc-RAP3的siRNAs分别转染3T3-L1前脂肪细胞,并对转染后的细胞进行诱导分化,并通过油红O染色、qRT-PCR检测成脂分化相关基因表达等方法比较过表达和敲降lnc-RAP3对3T3-L1前脂肪细胞成脂分化的影响。结果显示,过表达lnc-RAP3后,细胞内脂滴聚集显著减少(P<0.05),在诱导分化第0 d、2 d和4 d时C/EBPαGlut4PPARγLPLFAS的表达水平均呈显著(P<0.05)或极显著(P<0.01)下降;敲降lnc-RAP3后,细胞内脂滴聚集显著增多(P<0.05),同时在诱导分化第0 d、2 d时PPARγLPLC/EBPαFASGlut4的表达水平呈显著(P<0.05)或极显著(P<0.01)升高。本研究结果表明,lnc-RAP3可能通过影响成脂分化相关基因的表达来抑制3T3-L1前脂肪细胞的成脂分化。  相似文献   

19.
dlk1 is an epidermal growth factor (EGF)-like homeotic protein containing an intracellular region, a single transmembrane domain, and an extracellular region possessing six EGF-like repeats and a protease-target sequence. dlk1 functions as a modulator of adipogenesis, and other differentiation processes. The molecular mechanisms by which dlk1 regulates these processes are unclear. It has been reported that different Dlk1 mRNA spliced variants, encoding for isoforms possessing the protease-target sequence or not, determine the production of membrane-associated or soluble, secreted extracellular dlk1 proteins that appear to affect adipogenesis of 3T3-L1 cells differently. In particular, only soluble variants inhibit this process. Some recent evidence suggest that dlk1 may modulate extracellular stimuli inducing differentiation. Thus, an enforced decrease of Dlk1 expression in BALB/c 3T3 cells, which results in an increase of their adipogenic potential in response to insulin-like growth factor 1 (IGF-1), modifies the kinetics and levels of activation of ERK1/2 triggered by it. In this work, we identified a strong and specific interaction between the protease-target dlk1 region and the non-IGF binding region of IGF binding protein 1 (IGFBP1), a protein that binds to IGFs and modulates their action. We also observed that the increased adipogenic potential of 3T3-L1 cells caused by diminishing Dlk1 expression through transfection with an antisense Dlk1 expression construct was inhibited by the presence of IGFBP1 in the differentiation medium. On the other hand, the presence of IGFBP1 in the culture medium slightly increased the adipogenic potential of control 3T3-L1 cells, expressing regular levels of Dlk1. These data suggest that membrane dlk1 variants bind to extracellular IGFBP1/IGF-1 complexes, which may favor the release of IGF-1 and increase the local concentration of free IGF-1 that can enhance IGF receptor signaling, leading to adipogenesis.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号