首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   26篇
  免费   1篇
  2022年   1篇
  2021年   1篇
  2012年   1篇
  2011年   2篇
  2010年   1篇
  2009年   2篇
  2008年   2篇
  2006年   1篇
  2005年   2篇
  2003年   1篇
  2000年   3篇
  1999年   1篇
  1998年   1篇
  1997年   4篇
  1995年   2篇
  1994年   1篇
  1983年   1篇
排序方式: 共有27条查询结果,搜索用时 15 毫秒
1.
Darwin first recognized the importance of episodic intercontinental dispersal in the establishment of worldwide biotic diversity. Faunal exchange across the Bering Land Bridge is a major example of such dispersal. Here, we demonstrate with mitochondrial DNA evidence that three independent dispersal events from Asia to North America are the source for almost all lizard taxa found in continental eastern North America. Two other dispersal events across Beringia account for observed diversity among North American ranid frogs, one of the most species-rich groups of frogs in eastern North America. The contribution of faunal elements from Asia via dispersal across Beringia is a dominant theme in the historical assembly of the eastern North American herpetofauna.  相似文献   
2.
A phylogenetic tree for acrodont lizards (Chamaeleonidae and Agamidae) is established based on 1434 bases (1041 informative) of aligned DNA positions from a 1685-1778 base pair region of the mitochondrial genome. Sequences from three protein-coding genes (ND1, ND2, and COI) are combined with sequences from eight intervening tRNA genes for samples of 70 acrodont taxa and two outgroups. Parsimony analysis of nucleotide sequences identifies eight major clades in the Acrodonta. Most agamid lizards are placed into three distinct clades. One clade is composed of all taxa occurring in Australia and New Guinea; Physignathus cocincinus from Southeast Asia is the sister taxon to the Australia-New Guinea clade. A second clade is composed of taxa occurring from Tibet and the Indian Subcontinent east through South and East Asia. A third clade is composed of taxa occurring from Africa east through Arabia and West Asia to Tibet and the Indian Subcontinent. These three clades contain all agamid lizards except Uromastyx, Leiolepis, and Hydrosaurus, which represent three additional clades of the Agamidae. The Chamaeleonidae forms another clade weakly supported as the sister taxon to the Agamidae. All eight clades of the Acrodonta contain members occurring on land masses derived from Gondwanaland. A hypothesis of agamid lizards rafting with Gondwanan plates is examined statistically. This hypothesis suggests that the African/West Asian clade is of African or Indian origin, and the South Asian clade is either of Indian or Southeast Asian origin. The shortest tree suggests a possible African origin for the former and an Indian origin for the latter, but this result is not statistically robust. The Australia-New Guinea clade rafted with the Australia-New Guinea plate and forms the sister group to a Southeast Asian taxon that occurs on plates that broke from northern Australia-New Guinea. Other acrodont taxa are inferred to be associated with the plates of Afro-Arabia and Madagascar (Chameleonidae), India (Uromastyx), or southeast Asia (Hydrosaurus and Leiolepis). Introduction of different biotic elements to Asia by way of separate Gondwanan plates may be a major theme of Asian biogeography. Three historical events may be responsible for the sharp faunal barrier between Southeast Asia and Australia-New Guinea, known as Wallace's line: (1) primary vicariance caused by plate separations; (2) secondary contact of Southeast Asian plates with Eurasia, leading to dispersal from Eurasia into Southeast Asia, and (3) dispersal of the Indian fauna (after collision of that subcontinent) to Southeast Asia. Acrodont lizards show the first and third of these biogeographic patterns and anguid lizards exhibit the second pattern. Modern faunal diversity may be influenced primarily by historical events such as tectonic collisions and land bridge connections, which are expected to promote episodic turnover of continental faunas by introducing new faunal elements into an area. Repeated tectonic collisions may be one of the most important phenomena promoting continental biodiversity. Phylogenetics is a powerful method for investigating these processes.  相似文献   
3.
Presence of the dihydrouridine (D) stem in the mitochondrial cysteine tRNA is unusually variable among lepidosaurian reptiles. Phylogenetic and comparative analyses of cysteine tRNA gene sequences identify eight parallel losses of the D-stem, resulting in D-arm replacement loops. Sampling within the monophyletic Acrodonta provides no evidence for reversal. Slipped-strand mispairing of noncontiguous repeated sequences during replication or direct replication slippage can explain repeats observed within cysteine tRNAs that contain a D-arm replacement loop. These two mechanisms involving replication slippage can account for the loss of the cysteine tRNA D-stem in several lepidosaurian lineages, and may represent general mechanisms by which the secondary structures of mitochondrial tRNAs are altered.   相似文献   
4.
The dentition and tooth crown microstructure of gekkonids and eublepharids are examined. Scanning electron microscopy shows that the lingual surface of teeth in these lizards has one, two, or, occasionally, several cusps separated by grooves. The teeth of geckoes usually have two (lingual and labial) cusps in the apical region. With respect to the number of teeth, the majority of Gekkota fall into two groups. The first includes a few species with many teeth (50 or more) in the dentary and maxilla, the eublepharids Goniurosaurus and Aeluroscalabotes, and the gekkonid Cyrtopodion louisiadensis. The second group, comprising most of the species, is subdivided into two subgroups, species with 20–30 or 30–40 teeth in jaw bones. Teratoscincus belongs to the first subgroup of the second group.  相似文献   
5.
The complete cDNA sequence and protein reading frame of a developmentally regulated hemocyanin subunit in the Dungeness crab (Cancer magister) is presented. The protein sequence is aligned with 18 potentially homologous hemocyanin-type proteins displaying apparent sequence similarities. Functional domains are identified, and a comparison of predicted hydrophilicities, surface probabilities, and regional backbone flexibilities provides evidence for a remarkable degree of structural conservation among the proteins surveyed. Parsimony analysis of the protein sequence alignment identifies four monophyletic groups on the arthropodan branch of the hemocyanin gene tree: crustacean hemocyanins, insect hexamerins, chelicerate hemocyanins, and arthropodan prophenoloxidases. They form a monophyletic group relative to molluscan hemocyanins and nonarthropodan tyrosinases. Arthropodan prophenoloxidases, although functionally similar to tyrosinases, appear to belong to the arthropodan hexamer- type hemolymph proteins as opposed to molluscan hemocyanins and tyrosinases.   相似文献   
6.
7.
Eremias, or racerunners, is a widespread lacertid genus occurring in China, Mongolia, Korea, Central Asia, Southwest Asia and Southeast Europe. It has been through a series of taxonomic revisions, but the phylogenetic relationships among the species and subgenera remain unclear. In this study, a frequently studied region of the mitochondrial 16S rRNA was used to (i) reassess the phylogenetic relationships of some Eremias species, (ii) test if the viviparous species form a monophyletic group, and (iii) estimate divergence time among lineages using a Bayesian relaxed molecular-clock approach. The resulting phylogeny supports monophyly of Eremias sensu Szczerbak and a clade comprising Eremias, Acanthodactylus and Latastia. An earlier finding demonstrating monophyly of the subgenus Pareremias is corroborated, with Eremias argus being the sister taxon to Eremias brenchleyi. We present the first evidence that viviparous species form a monophyletic group. In addition, Eremias przewalskii is nested within Eremias multiocellata, suggesting that the latter is likely a paraphyletic species or a species complex. Eremias acutirostris and Eremias persica form a clade that is closely related to the subgenus Pareremias. However, the subgenera Aspidorhinus, Scapteira, and Rhabderemias seem not to be monophyletic, respectively. The Bayesian divergence-time estimation suggests that Eremias originated at about 9.9 million years ago (with the 95% confidence interval ranging from 7.6 to 12 Ma), and diversified from Late Miocene to Pleistocene. Specifically, the divergence time of the subgenus Pareremias was dated to about 6.3 million years ago (with the 95% confidence interval ranging from 5.3 to 8.5 Ma), which suggests that the diversification of this subgenus might be correlated with the evolution of an East Asian monsoon climate triggered by the rapid uplift of the Tibetan Plateau approximately 8 Ma.  相似文献   
8.
9.
The Central Asian agamid lizards are ecologically and morphologically diverse, occurring across a broad range of desert environments in this biogeographically important region. It is probable that past climatic shifts have significantly influenced the diversification patterns and distributions of the agamid lizards of this region. To assess this within a phylogenetic framework we sequenced a 1200 bp region of mitochondrial DNA and a 1200 bp nuclear gene (RAG-1), incorporating both inter- and intraspecific sampling across Central Asian agamids. Our topology and divergence time estimates support an Eocene origin of the Agaminae subfamily on the Indian subcontinent, coinciding with the collision of India into Eurasia. The onset of aridification in Central Asia during the Late Oligocene, resulting from the retreat of the Paratethys Sea and the intensified uplift of the Tibetan–Himalayan complex, probably played an important role in the diversification of Phrynocephalus, one of the three genera studied. Intensification of aridity and geologic events in the Plio-Pleistocene and Quaternary glacial cycling probably had a significant influence on intraspecific diversification patterns within Phrynocephalus.  相似文献   
10.
On the basis of morphological and molecular data, taxonomic diversity of the agamid genus Acanthosaura in Vietnam is discussed. This genus is represented in Vietnam by four species of two complexes, A. capra and A. lepidogaster. DNA analysis and the absence of reliable finds suggest to exclude A. crucigera and A. armata from the faunal list of Vietnam. The recently described species A. nataliae Orlov, Nguyen and Nguyen, 2006 of the A. capra complex is considered. Two species are recognized in the A. lepidogaster complex, one of which, A. coronata Günther, 1861, Smith (1935) regarded as a synonym of A. lepidogaster (Cuvier, 1829).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号