首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10篇
  免费   0篇
  2021年   1篇
  2020年   1篇
  2017年   1篇
  2016年   2篇
  2015年   1篇
  2014年   1篇
  2012年   1篇
  2008年   1篇
  2006年   1篇
排序方式: 共有10条查询结果,搜索用时 62 毫秒
1
1.

Background  

Flying lemurs or Colugos (order Dermoptera) represent an ancient mammalian lineage that contains only two extant species. Although molecular evidence strongly supports that the orders Dermoptera, Scandentia, Lagomorpha, Rodentia and Primates form a superordinal clade called Supraprimates (or Euarchontoglires), the phylogenetic placement of Dermoptera within Supraprimates remains ambiguous.  相似文献   
2.
We analyzed the distribution of repetitive DNA sequences on the chromosomes of nine species of the Bagridae from Thailand, i.e., Hemibagrus filamentus; H. nemurus; H. wyckii; H. wyckioides; Mystus atrifasciatus; M. multiradiatus; M. mysticetus; M. bocourti and Pseudomystus siamensis. Two classes of microsatellites and one transposable element (TE) were mapped by fluorescence in situ hybridization. The distribution of the repetitive sequences was comparatively analyzed in view to investigate their contribution in the chromosomal evolution of this fish group. In all species the microsatellites (CA)15 and (GA)15 are abundantly distributed in all chromosomes, usually in the telomeric regions. The retrotransposable element Rex 1 is widely distributed over the whole genome including heterochromatin and euchromatin, but with an unexpected accumulation in one chromosome pair in some species. In fact, some species–specific patterns could be observed considering both microsatellites and TE distribution. The results demonstrated that the compartmentalization of repeated elements is not simply restricted to heterochromatic regions, as it has been postulated in the first concepts of the genomic organization of repetitive elements in genomes. Moreover, the organization of these repeats seems to reflect their intense and specific evolutionary pathway, providing new insights about the chromosomal evolution in the Bagridae.  相似文献   
3.
4.
The distribution of Nepenthes mirabilis ranges from Northeast (NE) to South (S) Thailand. Eleven individuals from NE, S and Suen Jatujak market in Bangkok, Central (C) Thailand, were collected and divided into four populations according to their geographical areas. These four populations were analyzed to determine a genetic diversity profile using thirteen inter-simple sequence repeat markers. The individuals produced 75.18% polymorphic banding profiles. The Shannon’s index was used to estimate genetic diversity. Total genetic diversity (H T) and inter-population genetic diversity (H S) were 0.854 and 0.678, respectively. The degree of genetic differentiation (G ST) of the species populations is 0.206, whereas the gene flow (Nm) among all the various geographical area populations is 1.016. Both the dendrogram and the results of the Shannon’s diversity index suggest great genetic diversity. These results support the broad range of distribution sites of Nepenthes mirabilis, which would require high genetic diversity to adapt to the environmental variations that can be found between NE, C, and S Thailand. ANOVA shows that the genetic diversity in each population is not significantly different (P > 0.05). Mantel tests reveal that geographical distance is an important factor for affecting the genetic distances among populations.  相似文献   
5.
6.
Channid fishes, commonly referred to as “snakeheads”, are currently very important in Asian fishery and aquaculture due to the substantial decline in natural populations because of overexploitation. A large degree of chromosomal variation has been found in this family, mainly through the use of conventional cytogenetic investigations. In this study, we analyzed the karyotype structure and the distribution of 7 repetitive DNA sequences in several Channa species from different Thailand river basins. The aim of this study was to investigate the chromosomal differentiation among species and populations to improve upon the knowledge of its biodiversity and evolutionary history. Rearrangements, such as pericentric inversions, fusions and polyploidization, appear to be important events during the karyotypic evolution of this genus, resulting in the chromosomal diversity observed among the distinct species and even among populations of the same species. In addition, such variability is also increased by the genomic dynamism of repetitive elements, particularly by the differential distribution and accumulation of rDNA sequences on chromosomes. This marked diversity is likely linked to the lifestyle of the snakehead fishes and their population fragmentation, as already identified for other fish species. The karyotypic features highlight the biodiversity of the channid fishes and justify a taxonomic revision of the genus Channa, as well as of the Channidae family as a whole, as some nominal species may actually constitute species complexes.  相似文献   
7.
The Cyprinidae family is a highly diversified but demonstrably monophyletic lineage of cypriniform fishes. Among them, the genus Osteochilus contains 35 recognized valid species distributed from India, throughout Myanmar, Laos, Thailand, Malaysia, Indonesian archipelago to southern China. In this study, karyotypes and other chromosomal characteristics of five Osteochilus species occurring in Thailand, namely O. lini, O. melanopleura, O. microcephalus, O. vittatus and O. waandersii were examined using conventional and molecular cytogenetic protocols. Our results showed they possessed diploid chromosome number (2n) invariably 2n = 50, but the ratio of uni- and bi-armed chromosomes was highly variable among their karyotypes, indicating extensive chromosomal rearrangements. Only one chromosome pair bearing 5S rDNA sites occurred in most species, except O. melanopleura, where two sites were detected. In contrast, only one chromosomal pair bearing 18S rDNA sites were observed among their karyotypes, but in different positions. These cytogenetic patterns indicated that the cytogenomic divergence patterns of these Osteochilus species were largely corresponding to the inferred phylogenetic tree. Similarly, different patterns of the distributions of rDNAs and microsatellites across genomes of examined species as well as their different karyotype structures indicated significant evolutionary differentiation of Osteochilus genomes.  相似文献   
8.
The first cytogenetic comparisons of five snapper species from Thailand were presented here. Renal cell samples were taken from blacktail snapper (Lutjanus fulvus), five lined snapper (L. quinquelineatus), dory snapper (L. fulviflamma), brownstripe red snapper (L. vitta), and mangrove red snapper (L. argentimaculatus). The mitotic chromosome preparation was prepared directly from kidney cells. Conventional staining and Ag-NOR banding techniques were applied to stain the chromosomes. The results exhibited that all five snapper species have the diploid chromosome numbers of 2n = 48 and the fundamental numbers (NF) of 48. The presences of large, medium, and small telocentric chromosomes were 22-24-2, 24-20-4, 36-10-2, 28-16-4 and 36-10-2, respectively. The Ag- NORs banding technique provides the pair of nucleolar organizer regions (NORs) at subcentromeric region of the long arm of the respective telocentric chromosome pairs 9, 1, 3, 4 and 9. Their karyotype formulas is as follows: L. fulvus (2n = 48): L 22 t + M 24 t + S 2 t , L. quinquelineatus (2n = 48): L 24 t + M 20 t + S 4 t , L. fulviflamma (2n = 48): Lt36 + Mt10 + St2, L. vitta (2n = 48): L 28 t + M 16 t + S 4 t , and L. argentimaculatus (2n = 48): L 36 t + M 10 t + S 2 t .  相似文献   
9.
Chromosomal evolution in carnivores has been revisited extensively using cross-species chromosome painting. Painting probes derived from flow-sorted chromosomes of the domestic dog, which has one of the most rearranged karyotypes in mammals and the highest dipoid number (2n=78) in carnivores, are a powerful tool in detecting both evolutionary intra- and inter-chromosomal rearrangements. However, only a few comparative maps have been established between dog and other non-Canidae species. Here, we extended cross-species painting with dog probes to seven more species representing six carnivore families: Eurasian lynx (Lynx lynx), the stone marten (Martes foina), the small Indian civet (Viverricula indica), the Asian palm civet (Paradoxurus hermaphrodites), Javan mongoose (Hepestes javanicas), the raccoon (Procyon lotor) and the giant panda (Ailuropoda melanoleuca). The numbers and positions of intra-chromosomal rearrangements were found to differ among these carnivore species. A comparative map between human and stone marten, and a map among the Yangtze finless porpoise (Neophocaena phocaenoides asiaeorientalis), stone marten and human were also established to facilitate outgroup comparison and to integrate comparative maps between stone marten and other carnivores with such maps between human and other species. These comparative maps give further insight into genome evolution and karyotype phylogenetic relationships among carnivores, and will facilitate the transfer of gene mapping data from human, domestic dog and cat to other species.  相似文献   
10.
Epinephelidae (groupers) is an astonishingly diverse group of carnivorous fish widely distributed in reef environments around the world, with growing economic importance. The first chromosomal inferences suggested a conservative scenario for the family. However, to date, this has not been validated using biogeographic and phylogenetic approaches. Thus, to estimate karyotype diversification among groupers, eight species from the Atlantic and Indian oceans were investigated using conventional cytogenetic protocols and fluorescence in situ hybridization of repetitive sequences (rDNA, microsatellites, transposable elements). Despite the remarkable persistence of some symplesiomorphic karyotype patterns, such as all species sharing 2n=48 and most preserve a basal karyotype (2n=48 acrocentrics), the chromosomal diversification in the family revealed an unsuspected evolutionary dynamic, where about 40% of the species escape from the ancestral karyotype pattern. These karyotype changes showed a relation with the historical biogeography, likely as a byproduct of the progressive occupancy of new areas (huge diversity of adaptive and speciation conditions). In this context, oceanic regions harboring more recent clades such as those of the Indo-Pacific, exhibited a higher karyotype diversity. Therefore, the karyotype evolution of Epinephelidae fits well with the expansion and geographic contingencies of its clades, providing a more complex and diverse scenario than previously assumed.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号