首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   41篇
  免费   5篇
  2015年   1篇
  2014年   2篇
  2012年   3篇
  2011年   4篇
  2010年   3篇
  2009年   2篇
  2004年   3篇
  2003年   1篇
  2002年   6篇
  2001年   1篇
  2000年   2篇
  1998年   3篇
  1997年   1篇
  1996年   1篇
  1995年   1篇
  1991年   1篇
  1990年   1篇
  1989年   2篇
  1988年   1篇
  1987年   3篇
  1982年   1篇
  1978年   1篇
  1977年   2篇
排序方式: 共有46条查询结果,搜索用时 15 毫秒
1.

Background

Toll like receptors (TLR) play the central role in the recognition of pathogen associated molecular patterns (PAMPs). Mutations in the TLR1, TLR2 and TLR4 genes may change the ability to recognize PAMPs and cause altered responsiveness to the bacterial pathogens.

Results

The study presents association between TLR gene mutations and increased susceptibility to Mycobacterium avium subsp. paratuberculosis (MAP) infection. Novel mutations in TLR genes (TLR1- Ser150Gly and Val220Met; TLR2 – Phe670Leu) were statistically correlated with the hindrance in recognition of MAP legends. This correlation was confirmed subsequently by measuring the expression levels of cytokines (IL-4, IL-8, IL-10, IL-12 and IFN-γ) in the mutant and wild type moDCs (mocyte derived dendritic cells) after challenge with MAP cell lysate or LPS. Further in silico analysis of the TLR1 and TLR4 ectodomains (ECD) revealed the polymorphic nature of the central ECD and irregularities in the central LRR (leucine rich repeat) motifs.

Conclusion

The most critical positions that may alter the pathogen recognition ability of TLR were: the 9th amino acid position in LRR motif (TLR1–LRR10) and 4th residue downstream to LRR domain (exta-LRR region of TLR4). The study describes novel mutations in the TLRs and presents their association with the MAP infection.  相似文献   
2.
It is now well established that opioids modulate cholinergic excitatory neurotransmission in the gastrointestinal tract. The aim of the present study was to characterize a possible effect of endomorphins on nonadrenergic, noncholinergic (NANC) relaxant neurotransmission in the rat gastric fundus in vitro. The drugs used in the experiments were the endogenous mu-opioid receptors (MORs) endomorphin 1 and 2 and the mu-opioid receptor antagonist CTAP (D-Phe-Cys-Tyr-D-Trp-Arg-Thr-Pen-Thr-NH2). CTAP left the basal tonus and the spontaneous activity of the preparation unchanged. Electrical field stimulation (EFS) under NANC conditions at frequencies ranging from 0.5 to 16 Hz caused a frequency-dependent relaxant response on the 5-hydoxytryptamine (5-HT) (10(-7) M) precontracted smooth-muscle strip. Both endomorphin 1 and endomorphin 2 significantly reduced this relaxation in a concentration-dependent manner. Endomorphin 1 proved to be more potent in reducing the relaxant responses. The endomorphin effects were significantly reversed by the MOR antagonist CTAP. CTAP itself did not influence the EFS-induced relaxation. In summary, these data provide evidence that the endogenous MOR agonists endomorphin 1 and 2 can reduce nonadrenergic, noncholinergic neurotransmission in the rat gastric fundus smooth muscle via a pathway involving MORs. The physiological relevance of these findings remains to be established, since the data presented suggest that the endomorphins act as neuromodulators within NANC relaxant neurotransmission.  相似文献   
3.
Rates and patterns of evolution in partial sequences of five mitochondrial genes (cytochrome b, ATPase 6, NADH dehydrogenase subunit 5, tRNA(Glu), and the control region) were compared among taxa in the passerine bird genera Fringilla and Carduelis. Rates of divergence do not vary significantly among genes, even in comparisons with the control region. Rate variation among lineages is significant only for the control region and NADH dehydrogenase subunit 5, and patterns of variation are consistent with the expectations of neutral theory. Base composition is biased in all genes but is stationary among lineages, and there is evidence for directional mutation pressure only in the control region. Despite these similarities, patterns of substitution differ among genes, consistent with alternative regimes of selective constraint. Rates of nonsynonymous substitution are higher in NADH dehydrogenase subunit 5 than in other protein-coding genes, and transitions exist in elevated proportions relative to transversions. Transitions appear to accumulate linearly with time in tRNA(Glu), and despite exhibiting the highest overall rate of divergence among species, there are no transversional changes in this gene. Finally, for resolving phylogenetic relationships among Fringilla taxa, the combined protein-coding data are broadly similar to those of the control region in terms of phylogenetic informativeness and statistical support.   相似文献   
4.
The Drosophila melanogaster gene flightless-I, involved in gastrulation and muscle degeneration, has Caenorhabditis elegans and human homologues. In these highly conserved genes, two previously known gene families have been brought together, families encoding the actin- binding proteins related to gelsolin and the leucine-rich-repeat (LRR) group of proteins involved in protein-protein interactions. Both these gene families exhibit characteristics of molecular changes involving replication slippage and exon shuffling. Phylogenetic analyses of 19 amino acid sequences of 6 related protein types indicate that actin- associated proteins related to gelsolin are monophyletic to a common ancestor and include flightless proteins. Conversely, comparison of 24 amino acid sequences of LRR proteins including the flightless proteins indicates that flightless proteins are members of a structurally related subgroup. Included in the flightless cluster are human and mouse rsp-1 proteins involved in suppressing v-Ras transformation of cells and the membrane-associated yeast (Saccharomyces cerevisae) adenylate cyclase whose analogous LRRs are required for interaction with Ras proteins. There is a strong possibility that ligands for this group could be related and that flightless may have a similar role in Ras signal transduction. It is hypothesized that an ancestral monomeric gelsolin precursor protein has undergone at least four independent gene reorganization events to account for the structural diversity of the extant family of gelsolin-related proteins and that gene duplication and exon shuffling events occurred prior to or at the beginning of multicellular life, resulting in the evolution of some members of the family soon after the appearance of actin-type proteins.   相似文献   
5.
Mg(2+) at an optimal concentration of 2mM (ph 6.5) induces large increases (up to 30 percent) in the optical density of bovine heart mitochondria incubated under conditions of low ionic strength (< approx. 0.01). The increases are associated with aggregation (sticking together) of the inner membranes and are little affected by changes in the energy status of the mitochondria. Virtually all of a number of other polyvalent cations tested and Ag(+) induce increases in mitochondrial optical density similar to those induced by Mg(2+), their approximate order of concentration effectiveness in respect to Mg(2+) being: La(3+) > Pb(2+) = Cu(2+) > Cd(2+) > Zn(2+) > Ag(+) > Mn(2+) > Ca(2+) > Mg(2+). With the exception of Mg(2+), all of these cations appear to induce swelling of the mitochondria concomitant with inner membrane aggregation. The inhibitors of the adenine nucleotide transport reaction carboxyatratyloside and bongkrekic acid are capable of preventing and reversing Mg(2+)-induced aggregation at the same low concentration required for complete inhibition of phosphorylating respiration, suggesting that they inhibit the aggregation by binding to the adenine nucleotide carrier. The findings are interpreted to indicate (a) that the inner mitochondrial membrane is normally prevented from aggregating by virtue of its net negative outer surface change, (b) that the cations induce the membrane to aggregate by binding at its outer surface, decreasing the net negative charge, and (c) that carboxyatractyloside and bongkrekic acid inhibit the aggregation by binding to the outer surface of the membrane, increasing the net negative charge.  相似文献   
6.
7.
8.
Recent studies implicate that apelin and its receptor APJ may have important role for the modulation of angiogenesis. The aim of this study was to further characterise the regulation of apelin/APJ system in bovine ovary. Experiment 1: corpora lutea (CL) were assigned to the following stages: days 1-2, 3-4, 5-7, 8-12, 13-16, >18 (after regression) of oestrous cycle and of gravidity (month <3, 3-5, 6-7 and >8). Experiment 2: Follicles during maturation were divided into granulosa cells (GC) and theca interna (TI) and were examined separately. Classification of follicles occurred by follicle size and oestradiol-17β (E2) concentration in the follicular fluid (FF) (<0.5 ng/ml, 0.5-5 ng/ml; 5-40 ng/ml; 40-180 ng/ml; >180 ng/ml). Real-time RT-PCR (qPCR) was applied to investigate mRNA expression of examined factors. In general, the expression level of apelin during the oestrous cycle was significantly higher compared to the one during pregnancy. Apelin mRNA levels were always high during the cycle with a tendency of decrease after CL regression. The APJ mRNA in the CL was significantly up regulated on days 5-7 and 8-12 followed by a decrease on days 13-16, and further on days >18. The expression of APJ does not show any significant regulation in the CL throughout pregnancy. The expression of apelin and APJ was not statistically regulated in GC, but was significantly up regulated in follicles with an E2 concentration of more than 5 ng/ml and showed an increase according to growth and maturation of follicles. In conclusion, our data suggest that apelin/APJ system is involved in the mechanism regulating angiogenesis during follicle maturation as well as during CL formation and function in the bovine ovary.  相似文献   
9.
The nitric oxide (NO) signaling pathway is a major nonadrenergic-noncholinergic transmitter mechanism in the enteric nervous system. Our aim was to localize the enzymes in question, i.e., neuronal nitric oxide synthase (nNOS), soluble guanylate cyclase (sGC), and cGMP-dependent kinase type I (cGK-I) in rat small intestine by indirect immunofluorescence. nNOS staining was found in neurons of the myenteric plexus and in varicose nerve fibers mainly in the circular muscle layer. The cells positive for neurokinin-1 (NK-1) receptor and c-kit (interstitial cells of Cajal, ICC) in the deep muscular plexus (DMP) did not show nNOS reactivity, but nNOS-positive nerve fibers were directly adjacent to them. sGC was found in flattened cells surrounding myenteric ganglia (periganglionic cells, PGC), in ICC of the DMP, faintly in smooth muscle cells (SMC), and in cells perivascularly scattered throughout the circular muscle layer. cGK-I immunoreactivity was found abundantly in PGC (which presumably are ICC), in ICC of DMP, in SMC of the innermost circular and longitudinal muscle layers, but less intensively in the outer circular layer. Weak cGK-I staining occurred in nerve cells within the myenteric and submucosal plexus. Conclusively the key enzymes of the NO signaling pathway are differentially distributed: Occurrence of nNOS exclusively in neurons and the presence of sGC and cGK-I predominantly in ICC suggest a sequence of neuronal NO release, activation of ICC, and consecutive smooth muscle relaxation. ICC of the DMP seem to be the primary targets for neurally released NO.  相似文献   
10.
The aim of this study was to investigate the effects of melatonin on rat gastric fundus smooth muscle. Melatonin (10(-4) to 10(-3) M) had no effect on the basal tone of gastric smooth muscle. After precontraction with carbachol (10(-6) M) or serotonin (10(-7) M), melatonin caused a concentration dependent inhibitory action. The half maximal effect on serotonin-induced contraction was found with 1.12 +/- 0.86 x 10(-5) M of melatonin. Increasing concentrations of melatonin (10(-5) to 10(-3) M) resulted in a right shift of the serotonin concentration response curve (10(-10) to 10(-5) M). This inhibitory effect of melatonin was partially blocked in the presence of apamin (10(-10) to 10(-7) M), a specific blocker of the small conductance calcium-dependent potassium channel, but not in the presence of other potassium channel blockers like charybdotoxin (10(-8) M), glibenclamide (l0(-5) M), or tetraethylammonium (ODQ, 10(-4) M). The inhibitory effect was not changed in the presence of the neuronal blocker tetrodotoxin (10(-6) M), the selective P2-receptor antagonist pyridoxalphosphate-6-azophenyl-2',4'-disulphonic acid (3 x 10(-5) M), the nitric-oxide synthase inhibitor N-nitro-L-arginine (3 x 10(-4) M), or the guanylate cyclase inhibitor 1H-[1,2,4]oxadiazolo[4,3-a]-quinoxalin-1-one (10(-4) M), suggesting that neither the purinergic, nitrergic, nor guanylate cyclase pathways were involved. We further investigated inhibitory responses to electrical field stimulation (EFS) at different frequencies under non-adrenergic, non-cholinergic (NANC) conditions on a serotonin-induced contraction in the presence of melatonin (10)-5 to 10(-4) M). Melatonin significantly reduced these inhibitory NANC responses in higher (8-32 Hz), but not lower (05-4 Hz), frequencies (16 Hz without melatonin, 103 +/- 6.3%; melatonin 10(-5) M, 80.4 +/- 7.5%; melatonin 10(-4) M, 39.1 +/- 17.1%). Melatonin had no effect on contractile responses induced by EFS under basal tone. These results demonstrate that the inhibitory effect of melatonin in rat gastric fundus smooth muscle is apamin sensitive, but is not affected by other potassium channel blockers. This suggests that melatonin may be another transmitter candidate for the apamin sensitive responses within the gastrointestinal tract.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号