首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
It is known that phosphatidylserine (PS(-)) lipids have a very similar affinity for Ca(2+) and Mg(2+) cations, as revealed by electrokinetic and stability experiments. However, despite this similar affinity, experimental evidence shows that the presence of Ca(2+) or Mg(2+) induces very different aggregation behavior for PS(-) liposomes as characterized by their fractal dimensions. Also, turbidity measurements confirm substantial differences in aggregation behavior depending on the presence of Ca(2+) or Mg(2+) cations. These puzzling results suggest that although these two cations have a similar affinity for PS(-) lipids, they induce substantial structural differences in lipid bilayers containing each of these cations. In other words, these cations have strong ion-specific effects on the structure of PS(-) membranes. This interpretation is supported by all-atomic molecular-dynamics simulations showing that Ca(2+) and Mg(2+) cations have different binding sites and induce different membrane hydration. We show that although both ions are incorporated deep into the hydrophilic region of the membrane, they have different positions and configurations at the membrane. Absorbed Ca(2+) cations present a peak at a distance ~2 nm from the center of the lipid bilayer, and their most probable binding configuration involves two oxygen atoms from each of the charged moieties of the PS molecule (phosphate and carboxyl groups). In contrast, the distribution of absorbed Mg(2+) cations has two different peaks, located a few angstroms before and after the Ca(2+) peak. The most probable configurations (corresponding to these two peaks) involve binding to two oxygen atoms from carboxyl groups (the most superficial binding peak) or two oxygen atoms from phosphate groups (the most internal peak). Moreover, simulations also show differences in the hydration structure of the membrane: we obtained a hydration of 7.5 and 9 water molecules per lipid in simulations with Ca(2+) and Mg(2+), respectively.  相似文献   

2.
In bovine heart mitochondria bongkrekic acid at concentrations as low as about 4 nmol/mg protein (a) completely inhibits phosphorylation of exogenous adenosine diphosphate (ADP) and dephosphorylation of exogenous adenosine triphosphate (ATP), (b) completely reverses atractyloside inhibition of inner membrane contraction induced by exogenous adenine nucleotides, and (c) decreases the amount of adenine nucleotide required to elicit maximal exogenous adenine nucleotide-induced inner membrane contraction to a level which appears to correspond closely with the concentration of contractile, exogenous adenine nucleotide binding sites Bongkrekic acid at concentrations greater than 4 nmol/mg protein induces inner membrane contraction which seems to depend on the presence of endogenous ADP and/or ATP. The findings appear to be consistent with the interpretations (a) that the inner mitochondrial membrane contains two types of contractile, adenine nucleotide binding sites, (b) that the two sites differ markedly with regard to adenine nucleotide affinity, (c) that the high affinity site is identical with the adenine nucleotide exchange carrier, (d) that the low affinity site is accessible exclusively to endogenous adenine nucleotides and is largely unoccupied in the absence of bongkrekic acid, and (e) that bongkrekic acid increases the affinity of both sites in proportion to the amount of the antibiotic bound to the inner membrane.  相似文献   

3.
The ability of the divalent cations calcium, magnesium, and barium to permeate through the cGMP-gated channel of catfish cone outer segments was examined by measuring permeability and conductance ratios under biionic conditions and by measuring their ability to block current carried by sodium when presented on the cytoplasmic or extracellular side of the channel. Current carried by divalent cations in the absence of monovalent cations showed the typical rectification pattern observed from these channels under physiological conditions (an exponential increase in current at both positive and negative voltages). With calcium as the reference ion, the relative permeabilities were Ca > Ba > Mg, and the chord conductance ratios at +50 mV were in the order of Ca approximately Mg > Ba. With external sodium as the reference ion, the relative permeabilities were Ca > Mg > Ba > Na with chord conductance ratios at +30 mV in the order of Na >> Ca = Mg > Ba. The ability of divalent cations presented on the intracellular side to block the sodium current was in the order Ca > Mg > Ba at +30 mV and Ca > Ba > Mg at -30 mV. Block by external divalent cations was also investigated. The current-voltage relations showed block by internal divalent cations reveal no anomalous mole fraction behavior, suggesting little ion-ion interaction within the pore. An Eyring rate theory model with two barriers and a single binding site is sufficient to explain both these observations and those for monovalent cations, predicting a single-channel conductance under physiological conditions of 2 pS and an inward current at -30 mV carried by 82% Na, 5% Mg, and 13% Ca.  相似文献   

4.
cAMP-gated channels were studied in inside-out membrane patches excised from the apical cellular pole of isolated olfactory receptor cells of the rat. In the absence of divalent cations the dose-response curve of activation of patch current by cAMP had a KM of 4.0 microM at -50 mV and of 2.5 microM at +50 mV. However, addition of 0.2 or 0.5 mM Ca2+ shifted the KM of cAMP reversibly to the higher cAMP concentrations of 33 or 90 microM, respectively, at -50 mV. Among divalent cations, the relative potency for inducing cAMP affinity shifts was: Ca2+ > Sr2+ > Mn2+ > Ba2+ > Mg2+, of which Mg2+ (up to 3 mM) did not shift the KM at all. This potency sequence corresponds closely to that required for the activation of calmodulin. However, the Ca(2+)-sensitivity is lower than expected for a calmodulin-mediated action. Brief (60 s) transient exposure to 3 mM Mg2+, in the absence of other divalent cations, had a protective effect in that following washout of Mg2+, subsequent exposure to 0.2 mM Ca2+ no longer caused affinity shifts. This protection effect did not occur in intact cells and was probably a consequence of patch excision, possibly representing ablation of a regulatory protein from the channel cyclic nucleotide binding site. Thus, the binding of divalent cations, probably via a regulatory protein, controls the sensitivity of the cAMP-gated channels to cAMP. The influx of Ca2+ through these channels during the odorant response may rise to a sufficiently high concentration at the intracellular membrane surface to contribute to the desensitization of the odorant- induced response. The results also indicate that divalent cation effects on cyclic nucleotide-gated channels may depend on the sequence of pre-exposure to other divalent cations.  相似文献   

5.
Ca(2+)-induced mitochondrial depolarization was studied in single isolated rat brain and liver mitochondria. Digital imaging techniques and rhodamine 123 were used for mitochondrial membrane potential measurements. Low Ca(2+) concentrations (about 30--100 nM) initiated oscillations of the membrane potential followed by complete depolarization in brain mitochondria. In contrast, liver mitochondria were less sensitive to Ca(2+); 20 microm Ca(2+) was required to depolarize liver mitochondria. Ca(2+) did not initiate oscillatory depolarizations in liver mitochondria, where each individual mitochondrion depolarized abruptly and irreversibly. Adenine nucleotides dramatically reduced the oscillatory depolarization in brain mitochondria and delayed the onset of the depolarization in liver mitochondria. In both type of mitochondria, the stabilizing effect of adenine nucleotides completely abolished by an inhibition of adenine nucleotide translocator function with carboxyatractyloside, but was not sensitive to bongkrekic acid. Inhibitors of mitochondrial permeability transition cyclosporine A and bongkrekic acid also delayed Ca(2+)-depolarization. We hypothesize that the oscillatory depolarization in brain mitochondria is associated with the transient conformational change of the adenine nucleotide translocator from a specific transporter to a non-specific pore, whereas the non-oscillatory depolarization in liver mitochondria is caused by the irreversible opening of the pore.  相似文献   

6.
C2 domains regulate numerous eukaryotic signaling proteins by docking to target membranes upon binding Ca(2+). Effective activation of the C2 domain by intracellular Ca(2+) signals requires high Ca(2+) selectivity to exclude the prevalent physiological metal ions K(+), Na(+), and Mg(2+). The cooperative binding of two Ca(2+) ions to the C2 domain of cytosolic phospholipase A(2) (cPLA(2)-alpha) induces docking to phosphatidylcholine (PC) membranes. The ionic charge and size selectivities of this C2 domain were probed with representative mono-, di-, and trivalent spherical metal cations. Physiological concentrations of monovalent cations and Mg(2+) failed to bind to the domain and to induce docking to PC membranes. Superphysiological concentrations of Mg(2+) did bind but still failed to induce membrane docking. In contrast, Ca(2+), Sr(2+), and Ba(2+) bound to the domain in the low micromolar range, induced electrophoretic mobility shifts in native polyacrylamide gels, stabilized the domain against thermal denaturation, and induced docking to PC membranes. In the absence of membranes, the degree of apparent positive cooperativity in binding of Ca(2+), Sr(2+), and Ba(2+) decreased with increasing cation size, suggesting that the C2 domain binds two Ca(2+) or Sr(2+) ions, but only one Ba(2+) ion. These stoichiometries were correlated with the abilities of the ions to drive membrane docking, such that micromolar concentrations of Ca(2+) and Sr(2+) triggered docking while even millimolar concentrations of Ba(2+) yielded poor docking efficiency. The simplest explanation is that two bound divalent cations are required for stable membrane association. The physiological Ca(2+) ion triggered membrane docking at 20-fold lower concentrations than Sr(2+), due to both the higher Ca(2+) affinity of the free domain and the higher affinity of the Ca(2+)-loaded domain for membranes. Kinetic studies indicated that Ca(2+) ions bound to the free domain are retained at least 5-fold longer than Sr(2+) ions. Moreover, the Ca(2+)-loaded domain remained bound to membranes 2-fold longer than the Sr(2+)-loaded domain. For both Ca(2+) and Sr(2+), the two bound metal ions dissociate from the protein-membrane complex in two kinetically resolvable steps. Finally, representative trivalent lanthanide ions bound to the domain with high affinity and positive cooperativity, and induced docking to PC membranes. Overall, the results demonstrate that both cation charge and size constraints contribute to the high Ca(2+) selectivity of the C2 domain and suggest that formation of a cPLA(2)-alpha C2 domain-membrane complex requires two bound multivalent metal ions. These features are proposed to stem from the unique structural features of the metal ion-binding site in the C2 domain.  相似文献   

7.
Formation of palmitic acid/Ca(2+) (PA/Ca(2+)) complexes was suggested to play a key role in the non-classical permeability transition in mitochondria (NCPT), which seems to be involved in the PA-induced apoptosis of cardiomyocytes. Our previous studies of complexation of free fatty acids (FFA) with Ca(2+) showed that long-chain (C:16-C:22) saturated FFA had an affinity to Ca(2+), which was much higher than that of other FFA and lipids. The formation of FFA/Ca(2+) complexes in the black-lipid membrane (BLM) was demonstrated to induce a nonspecific ion permeability of the membrane. In the present work, we have found that binding of Ca(2+) to PA incorporated into the membrane of sulforhodamine B (SRB)-loaded liposomes results in an instant release of a part of SRB, with the quantity of SRB released depending on the concentration of PA and Ca(2+). The pH-optimum of this phenomenon, similar to that of PA/Ca(2+) complexation, is in the alkaline range. The same picture of SRB release has been revealed for stearic, but not for linoleic acid. Along with Ca(2+), some other bivalent cations (Ba(2+), Sr(2+), Mn(2+), Ni(2+), Co(2+)) also induce SRB release upon binding to PA-containing liposomes, while Mg(2+) turns out to be relatively ineffective. As revealed by fluorescence correlation spectroscopy, the apparent size of liposomes does not alter after the addition of PA, Ca(2+) or their combination. So it has been supposed that the cause of SRB release from liposomes is the formation of lipid pores. The effect of FFA/Ca(2+)-induced permeabilization of liposomal membranes has several analogies with NCPT, suggesting that both these phenomena are of similar nature.  相似文献   

8.
1. Rapid choline oxidation and the onset of P(i)-induced swelling by liver mitochondria, incubated in a sucrose medium at or above pH7.0, required the addition of both P(i) and an uncoupling agent. Below pH7.0, P(i) alone was required for rapid choline oxidation and swelling. 2. Choline oxidation was inhibited by each of several reagents that also inhibited P(i)-induced swelling under similar conditions of incubation, including EGTA, mersalyl, Mg(2+), the Ca(2+)-ionophore A23187, rotenone and nupercaine. None of these reagents had any significant effect on the rate of choline oxidation by sonicated mitochondria. There was therefore a close correlation between the conditions required for rapid choline oxidation and for P(i)-induced swelling to occur, suggesting that in the absence of mitochondrial swelling the rate of choline oxidation is regulated by the rate of choline transport across the mitochondrial membrane. 3. Respiratory-chain inhibitors, uncoupling agents (at pH6.5) and ionophore A23187 caused a loss of endogenous Ca(2+) from mitochondria, whereas nupercaine and Mg(2+) had no significant effect on the Ca(2+) content. Inhibition of choline oxidation and mitochondrial swelling by ionophore A23187 was reversed by adding Ca(2+), but not by Mg(2+). It is concluded that added P(i) promotes the Ca(2+)-dependent activation of mitochondrial membrane phospholipase activity in respiring mitochondria, causing an increase in the permeability of the mitochondrial inner membrane to choline and therefore enabling rapid choline oxidation to occur. Nupercaine and Mg(2+) appear to block choline oxidation and swelling by inhibiting phospholipase activity. 4. Choline was oxidized slowly by tightly coupled mitochondria largely depleted of their endogenous adenine nucleotides, suggesting that these compounds are not directly concerned in the regulation of choline oxidation. 5. The results are discussed in relation to the possible mechanism of choline transport across the mitochondrial membrane in vivo and the influence of this process on the pathways of choline metabolism in the liver.  相似文献   

9.
When rat liver mitochondria are allowed to cycle Ca(2+) and are incubated in the presence of the pro-oxidant menadione, they undergo swelling, membrane potential (DeltaPsi) collapse, and ion release. These effects, which are inhibited by cyclosporin A (CsA), are fully consistent with the opening of the so-called permeability transition pore. However, when Ca(2+) cycling is abolished by EGTA, the mitochondria remain energized (DeltaPsi collapse and swelling are avoided), but Ca(2+) efflux, promoted by the chelating agent, is stimulated by menadione. This stimulation goes together with the release of Mg(2+), K(+), and adenine nucleotides (AdN) and is inhibited by bongkrekic acid (BKA). The effect of menadione is also characterized by biphasic NAD(P)H oxidation which becomes monophasic in the presence of BKA, CsA, or EGTA and by the oxidation of thiol groups not restrained by the above-mentioned inhibitors. These results suggest that BKA acts indirectly by preserving in the matrix a critical amount of AdN without modifying the monophasic oxidation of pyridine nucleotides by menadione. A critical number of thiol groups also seems to be involved in the phenomenon. Their oxidation most probably causes a conformational change on adenine nucleotide translocase with the opening of the "low-conductance state" of the mitochondrial permeability transition, resulting in ion permeability without DeltaPsi disruption and mitochondrial swelling.  相似文献   

10.
In an accompanying paper we reported the use of differential scanning calorimetry and optical densitometry to characterize the melting and aggregation of 160 bp fragments of calf thymus DNA during heating in the presence of divalent metal cations. Aggregation is observed as thermal denaturation begins and becomes more extensive with increasing temperature until the melting temperature Tm is reached, after which the aggregates dissolve extensively. The order of effectiveness of the metals in inducing aggregation is generally consistent with their ability to induce melting: Cd > Ni > Co > Mn approximately Ca > Mg. Under our experimental conditions (50 mg/ml DNA, 100 mM MCl2, [metal]/[DNA phosphate] approximately 0.6), no measurable aggregates were observed for BaDNA or SrDNA. In this paper we show that the Shibata-Schurr theory of aggregation in the thermal denaturation region provides a good model for our observations. Free energies of cross-linking, induced by the divalent cations, are estimated to be between 34% and 38% of the free energies of base stacking. The ability of a divalent metal cation to induce DNA aggregation can be attributed to its ability to disrupt DNA base pairing and simultaneously to link two different DNA sites.  相似文献   

11.
The permeability transition pore complex: another view   总被引:49,自引:0,他引:49  
Halestrap AP  McStay GP  Clarke SJ 《Biochimie》2002,84(2-3):153-166
Mitochondria play a critical role in initiating both apoptotic and necrotic cell death. A major player in this process is the mitochondrial permeability transition pore (MPTP), a non-specific pore, permeant to any molecule of < 1.5 kDa, that opens in the inner mitochondrial membrane under conditions of elevated matrix [Ca(2+)], especially when this is accompanied by oxidative stress and depleted adenine nucleotides. Opening of the MPTP causes massive swelling of mitochondria, rupture of the outer membrane and release of intermembrane components that induce apoptosis. In addition mitochondria become depolarised causing inhibition of oxidative phosphorylation and stimulation of ATP hydrolysis. Pore opening is inhibited by cyclosporin A analogues with the same affinity as they inhibit the peptidyl-prolyl cis-trans isomerase activity of mitochondrial cyclophilin (CyP-D). These data and the observation that different ligands of the adenine nucleotide translocase (ANT) can either stimulate or inhibit pore opening led to the proposal that the MPTP is formed by a Ca-triggered conformational change of the ANT that is facilitated by the binding of CyP-D. Our model is able to explain the mode of action of a wide range of known modulators of the MPTP that exert their effects by changing the binding affinity of the ANT for CyP-D, Ca(2+) or adenine nucleotides. The extensive evidence for this model from our own and other laboratories is presented, including reconstitution studies that demonstrate the minimum configuration of the MPTP to require neither the voltage activated anion channel (VDAC or porin) nor any other outer membrane protein. However, other proteins including Bcl-2, BAX and virus-derived proteins may interact with the ANT to regulate the MPTP. Recent data suggest that oxidative cross-linking of two matrix facing cysteine residues on the ANT (Cys(56) and Cys(159)) plays a key role in regulating the MPTP. Adenine nucleotide binding to the ANT is inhibited by Cys(159) modification whilst oxidation of Cys(56) increases CyP-D binding to the ANT, probably at Pro(61).  相似文献   

12.
The rupture of the outer mitochondrial membrane is known to be critical for cell death, but the mechanism, specifically its redox-signaling aspects, still needs to be studied in more detail. In this work, the external NADH oxidation by rat liver mitochondria was studied under the outer membrane rupture induced by the mitochondria hypotonic treatment or the inner membrane permeability transition. The saturation of the oxidation rate was observed as a function of mitochondrial protein concentration. This effect was shown to result from cytochrome c binding to the mitochondrial membranes. At a relatively high concentration of mitochondria, the oxidation rate was strongly activated by 4 mm Mg(2+) due to cytochrome c desorption from the membranes. A minimal kinetic model was developed to explain the main phenomena of the external NADH oxidation modulated by cytochrome c and Mg(2+) in mitochondria with the ruptured outer membrane. The computational behavior of the model closely agreed with the experimental data. We suggest that the redox state of the released cytochrome c, considered by other authors to be important for apoptosis, may strongly depend on its oxidation by the fraction of mitochondria with the ruptured outer membrane and on the cytoplasmic cytochrome c reductase activity.  相似文献   

13.
In this study, we performed all-atom long-timescale molecular dynamics simulations of phospholipid bilayers incorporating three different proportions of negatively charged lipids in the presence of K(+), Mg(2+), and Ca(2+) ions to systemically determine how membrane properties are affected by cations and lipid compositions. Our simulations revealed that the binding affinity of Ca(2+) ions with lipids is significantly stronger than that of K(+) and Mg(2+) ions, regardless of the composition of the lipid bilayer. The binding of Ca(2+) ions to the lipids resulted in bilayers having smaller lateral areas, greater thicknesses, greater order, and slower rotation of their lipid head groups, relative to those of corresponding K(+)- and Mg(2+)-containing systems. The Ca(2+) ions bind preferentially to the phosphate groups of the lipids. The complexes formed between the cations and the lipids further assembled to form various multiple-cation-centered clusters in the presence of anionic lipids and at higher ionic strength-most notably for Ca(2+). The formation of cation-lipid complexes and clusters dehydrated and neutralized the anionic lipids, creating a more-hydrophobic environment suitable for membrane aggregation. We propose that the formation of Ca(2+)-phospholipid clusters across apposed lipid bilayers can work as a "cation glue" to adhere apposed membranes together, providing an adequate configuration for stalk formation during membrane fusion.  相似文献   

14.
The LolCDE complex of Escherichia coli releases outer membrane-specific lipoproteins from the inner membrane. Lipoproteins with Asp at +2 remain in the inner membrane since this residue functions as a LolCDE avoidance signal depending on phosphatidylethanolamine. We examined the effects of other phospholipids on lipoprotein sorting in proteoliposomes reconstituted with LolCDE and various synthetic phospholipids. The lipoprotein release and ATP hydrolysis were both low at 2 mM Mg(2+) but very high at 10 mM Mg(2+) in proteoliposomes containing cardiolipin alone. However, the Lol avoidance function was abolished at 10 mM Mg(2+), and the release of lipoproteins with Asp at +2 was as efficient as that of outer membrane-specific lipoproteins. The addition of phosphatidylethanolamine to cardiolipin stimulated the ATP hydrolysis and increased the Lol avoidance function of Asp at +2 at 2 mM Mg(2+). The addition of phosphatidylglycerol to cardiolipin nearly completely inhibited the release of lipoproteins with Asp at +2 even at 10 mM Mg(2+), while that of outer membrane-specific lipoproteins was not. Taken together, these results indicate that three major phospholipids of E. coli differently affect lipoprotein sorting and the activity of LolCDE.  相似文献   

15.
The association of rat brain hexokinase with heterologous recombinant yeast mitochondria harboring human porin (Yh) is comparable to that with rat liver mitochondria in terms of cation requirements, cooperativity in binding, and the effect of amphipathic compounds. Mg2+, which is required for hexokinase binding to all mitochondria, can be replaced by other cations. The efficiency of hexokinases, however, depends on the valence of hydrophilic cations, or the partition of hydrophobic cations in the membrane, implying that these act by reducing a prohibitive negative surface charge density on the outer membrane rather than fulfilling a specific structural requirement. Macromolecular crowding (using dextran) has dual effects. Dextran added in excess increases hexokinase binding to yeast mitochondria, according to the porin molecule they harbor. This effect, significant with wild-type yeast mitochondria, is only marginal with Yh as well as rat mitochondria. On the other hand, an increase in the number of hexokinase binding sites on mitochondria is also observed. This increase, moderate in wild-type organelles, is more pronounced with Yh. Finally, dextran, which has no effect on the modulation of hexokinase binding by cations, abolishes the inhibitory effect of amphipathic compounds. Thus, while hexokinase binding to mitochondria is predetermined by the porin molecule, the organization of the latter in the membrane plays a critical role as well, indicative that porin must associate with other mitochondrial components to form competent binding sites on the outer membrane.  相似文献   

16.
The cation selectivity of the Na entry mechanism located in the outer membrane of the bullfrog (Rana catesbeiana) skin epithelium was studied. This selectivity was determined by measuring the short-circuit current when all of the external sodium was replaced by another cation and, also, by noting the relative degree of inhibition that the alkali metal cations produced on Na influx. The ability of the Group Ia cations to permeate the apical membrane was determined from the tracer uptake experiments. The results demonstrate that (a) only Li and Na are actively transported through the epithelium; (b) the alkali cations K, Rb, and Cs do not enter the epithelium through the apical border and, therefore, Na and Li are the only alkali cations translocated through this membrane; (c) these impermeable cations are competitive inhibitors of Na entry; (d) the cations NH4 and Tl exhibit more complex behavior but, under well-defined conditions, also inhibit Na entry; and (e) the selectivity of the cation binding site is in the sequence Li congruent to Na > Tl > NH4 congruent to K > Rb > Cs, which corresponds to a high field strength site with tetrahedral symmetry.  相似文献   

17.
Mg(2+) competitively inhibits spermine transport in energized rat liver mitochondria (RLM) and exhibits a K(i) of 0.1mM on the initial rate and an I(50) of 0.6mM on total spermine accumulation after 20 min. Addition of 2mM Mg(2+) after spermine accumulation induces release of the polyamine. In view of the fact that spermine cycles across the inner membrane under physiological conditions, these results demonstrate that Mg(2+) inhibits spermine influx but does not affect the efflux pathway of the polyamine; the inhibitory effect occurs via an interaction with the specific site responsible for spermine transport. Instead, spermine inhibits Mg(2+) binding without affecting the rate of Mg(2+) transport, suggesting that both cations bind to the same site, which, however, is not used for Mg(2+) transport. Spermine also inhibits Mg(2+) efflux from RLM induced under conditions of the "low conductance state," a preliminary step preceding permeability transition pore opening.  相似文献   

18.
To investigate the functional significance of putative integrin divalent cation binding sites, several mutated alpha 4 subunit cDNAs were constructed. Mutants contained the conservative substitution of Glu for Asp or Asn at the third position in each of three putative divalent cation sites. Transfection of wild-type or mutated alpha 4 into K562 cells yielded comparable expression levels and immunoprecipitation profiles. However, for all three alpha 4 mutants, adhesion to CS1/fibronectin was greatly diminished in either the presence or absence of the stimulatory anti-beta 1 mAb TS2/16. Constitutive adhesion to vascular cell adhesion molecule (VCAM) 1 was also diminished but, unlike CS1 adhesion, was restored upon TS2/16 stimulation. In contrast, adhesion to the bacterial protein invasin was minimally affected by any of the three mutations. For each of the mutants, the order of preference for divalent cations was unchanged compared to wild-type alpha 4, on CS1/fibronectin (Mn2+ > Mg2+ > Ca2+), on VCAM-1 (Mn2+ > Mg2+ = Ca2+) and on invasin (Mg2+ = Ca2+). However for the three mutants, the efficiency of divalent cation utilization was decreased. On VCAM-1, 68-108 microM Mn2+ was required to support half-maximal adhesion for the mutants compared with 14-18 microM for wild-type alpha 4. These results indicate (a) that three different ligands for VLA-4 show widely differing sensitivities to mutations within putative divalent cation sites, and (b) each of the three putative divalent cation sites in alpha 4 have comparable functional importance with respect to both divalent cation usage and cell adhesion.  相似文献   

19.
alpha-Lactalbumin: structure and function   总被引:1,自引:0,他引:1  
Small milk protein alpha-lactalbumin (alpha-LA), a component of lactose synthase, is a simple model Ca(2+) binding protein, which does not belong to the EF-hand proteins, and a classical example of molten globule state. It has a strong Ca(2+) binding site, which binds Mg(2+), Mn(2+), Na(+), and K(+), and several distinct Zn(2+) binding sites. The binding of cations to the Ca(2+) site increases protein stability against action of heat and various denaturing agents, while the binding of Zn(2+) to the Ca(2+)-loaded protein decreases its stability. Functioning of alpha-LA requires its interactions with membranes, proteins, peptides and low molecular weight substrates and products. It was shown that these interactions are modulated by the binding of metal cations. Recently it was found that some folding variants of alpha-LA demonstrate bactericidal activity and some of them cause apoptosis of tumor cells.  相似文献   

20.
Compounds which induce calcium efflux from calcium-loaded mitochondria generally provoke membrane leakiness. The involvement of the ADP/ATP carrier in modification of mitochondrial membrane properties was studied. The addition of impermeant inhibitors of the ADP/ATP carrier, namely carboxyatractylate, palmitoyl coenzyme A (in the absence of carnitine), and pyridoxal 5-phosphate, to calcium-loaded mitochondria triggered the release of accumulated calcium, the leakage of endogenous ADP, and the swelling of mitochondria. Permeant ligands, such as bongkrekic acid or ADP, showed no damaging effect on membrane permeability; in fact, they impeded the membrane perturbation which was induced by the three impermeant effectors. In addition, both bongkrekic acid and ADP were able to cancel the calcium loss and swelling resulting from the oxidation of intramitochondrial pyridine nucleotides by acetoacetate. In acetoacetate-treated mitochondria, the ADP/ATP carrier was shown to be mainly in a c-state conformation (i.e., the nucleotide binding site had an external orientation). It was concluded that induction of membrane leakiness by calcium ions depends on the conformational state of the adenine nucleotide carrier. The ability of intramitochondrial calcium ions to modify membrane properties is determined by the orientation of the nucleotide binding site. Only the c-state conformation allows membrane destabilization. Consequently, all compounds which stabilize the ADP/ATP carrier in the c-state conformation will have a deleterious effect on calcium-loaded mitochondria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号