首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   157篇
  免费   10篇
  2023年   3篇
  2021年   9篇
  2020年   11篇
  2019年   3篇
  2018年   7篇
  2017年   10篇
  2016年   7篇
  2015年   20篇
  2014年   22篇
  2013年   10篇
  2012年   11篇
  2011年   9篇
  2010年   13篇
  2009年   2篇
  2008年   3篇
  2007年   6篇
  2006年   4篇
  2005年   3篇
  2004年   4篇
  2003年   2篇
  2002年   3篇
  2001年   1篇
  1995年   1篇
  1993年   1篇
  1991年   2篇
排序方式: 共有167条查询结果,搜索用时 31 毫秒
1.
Four bacterial and one yeast species, cultured and identified as Stenotrophomonas maltophilia, Acinetobacter sp., Pseudomonas sp. and Ochrobactrum sp. and the yeast as Metschnikowia reukaufii, were isolated from the internal organs of four collections of field-sourced egg parasitoid, Trichogramma chilonis, obtained as parasitised Helicoverpa armigera eggs. Bacteria were identified through 16 rRNA amplification and sequencing. The single species of yeast was identified through internal transcribed spacer sequences. A single bacterial species could be isolated from each of the four T. chilonis collections; however, all four T. chilonis collections yielded the yeast, M. reukaufii. In order to study the influence of the association of each of the bacterial species and the yeast, microbe-free laboratory-bred populations of T. chilonis were fed with the individual cultures and fitness parameters as parasitisation vigour and female bias were studied in T. chilonis over 10 generations. T. chilonis fed with either S. maltophilia or Acinetobacter sp. and Pseudomonas sp. showed a mean percent increase in female ratio of 26.2%, 30% and 30.3% and mean percent parasitisation of H. armigera eggs significantly increased by 38%, 32.2% and 31.3%, respectively. However, T. chilonis fed with Acinetobacter sp. did not positively influence the two T. chilonis fitness factors. The ubiquitous yeast, M. reukaufii, which could be isolated from all four collections of T. chilonis, could significantly increase both female count and percent parasitism ratio by 22% and 65%, respectively. This study has opened the possibility of modulating the parasitisation fitness of laboratory-bred T. chilonis, prior to field release, using microbes associated with them in the wild.  相似文献   
2.
Analyte-responsive smart polymeric materials are of great interest and have been actively investigated in the field of regenerative medicine. Phenylboronate containing copolymers form gels with polyols under alkaline conditions. Monosaccharides, by virtue of their higher affinity towards boronate, can displace polyols and solubilize such gels. In the present study, we investigate the possibility of utilizing phenylboronate-polyol interactions at physiological pH in order to develop monosaccharide-responsive degradable scaffold materials for systems dealing with cells and tissues. Amine assisted phenylboronate-polyol interactions were employed to develop novel hydrogel and cryogel scaffolds at neutral pH. The scaffolds displayed monosaccharide inducible gel-sol phase transformability. In vitro cell culture studies demonstrated the ability of scaffolds to support cell adhesion, viability and proliferation. Fructose induced gel degradation is used to recover cells cultured on the hydrogels. The cryogels displayed open macroporous structure and superior mechanical properties. These novel phase transformable phenylboronate-polyol based scaffolds displayed a great potential for various cell sheet and tissue engineering applications. Their monosaccharide responsiveness at physiological pH is very useful and can be utilized in the fields of cell immobilization, spheroid culture, saccharide recognition and analyte-responsive drug delivery.  相似文献   
3.
Degeneration of the intervertebral discs (IVD) is a leading cause of neck and low back pain. Degeneration begins in the central nucleus pulposus region, leading to loss of IVD osmotic properties. Regeneration approaches include administration of matrix-mimicking scaffolds, cells and/or therapeutic factors. Cell-targeting strategies are likely to improve delivery due to the low cell numbers in the IVD. Single-chain antibody fragments (scFvs) that bind IVD cells were isolated for potential delivery of therapeutics to degenerated IVD. The most cell-distal domain of neural cell adhesion molecule 1 (NCAM1) was cloned and expressed in Escherichia coli. Phage display technology was used to isolate a human scFv against the recombinant domain by panning a scFv library on the immobilised protein. The isolated scFv bound cultured rat astrocytes, as well as bovine nucleus pulposus and annulus fibrosus cells in immunocytochemical studies. The scFv also labelled cells in bovine spinal cord and six-month and two-year old bovine IVD sections by immunohistochemistry. Antibody fragments can provide cell-binding moieties at improved cost, time, yield and functionalisation potential over whole antibodies. The described scFv has potential application in delivery of therapeutics to NCAM1-expressing cells in degenerated IVD.  相似文献   
4.
Mechanical stresses directly regulate the function of several proteins of the integrin-mediated focal adhesion complex as they experience intra- and extracellular forces. Kindlin is a largely overlooked member of the focal adhesion complex whose roles in cellular mechanotransduction are only recently being identified. Recent crystallographic experiments have revealed that kindlins can form dimers that bind simultaneously to two integrins, providing a mechanistic explanation of how kindlins may promote integrin activation and clustering. In this study, using the newly identified molecular structure, we modeled the response of the kindlin2 dimer in complex with integrin β1 to mechanical cytoskeletal forces on integrins. Using molecular dynamics simulations, we show that forces on integrins are directly transmitted to the kindlin2 dimerization site, resulting in a shift in an R577-S550/E553 interaction network at this site. Under force, R577 on one protomer switches from interacting with S550 to forming new hydrogen bonds with E553 on the neighboring protomer, resulting in the strengthening of the kindlin2 dimer in complex with integrin β1. This force-induced strengthening is similar to the catch-bond mechanisms that have previously been observed in other adhesion molecules. Based on our results, we propose that the kindlin2 dimer is mechanosensitive and can strengthen integrin-mediated focal adhesions under force by shifting the interactions at its dimerization sites.  相似文献   
5.
6.
7.
Tnnt2, encoding thin‐filament sarcomeric protein cardiac troponin T, plays critical roles in heart development and function in mammals. To develop an inducible genetic deletion strategy in myocardial cells, we generated a new Tnnt2:MerCreMer (Tnnt2MerCreMer/+) knock‐in mouse. Rosa26 reporter lines were used to examine the specificity and efficiency of the inducible Cre recombinase. We found that Cre was specifically and robustly expressed in the cardiomyocytes at embryonic and adult stages following tamoxifen induction. The knock‐in allele on Tnnt2 locus does not impact cardiac function. These results suggest that this new Tnnt2MerCreMer/+ mouse could be applied towards the temporal genetic deletion of genes of interests in cardiomyocytes with Cre‐LoxP technology. The Tnnt2MerCreMer/+ mouse model also provides a useful tool to trace myocardial lineage during development and repair after cardiac injury. genesis 53:377–386, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   
8.
Synthetic Biology Open Language (SBOL) Visual is a graphical standard for genetic engineering. It consists of symbols representing DNA subsequences, including regulatory elements and DNA assembly features. These symbols can be used to draw illustrations for communication and instruction, and as image assets for computer-aided design. SBOL Visual is a community standard, freely available for personal, academic, and commercial use (Creative Commons CC0 license). We provide prototypical symbol images that have been used in scientific publications and software tools. We encourage users to use and modify them freely, and to join the SBOL Visual community: http://www.sbolstandard.org/visual.  相似文献   
9.
Elevated plasma triglyceride (TG) levels are an established risk factor for type-2 diabetes (T2D). However, recent studies have hinted at the possibility that genetic risk for TG may paradoxically protect against T2D. In this study, we examined the association of genetic risk for TG with incident T2D, and the interaction of baseline TG with TG genetic risk on incident T2D in 13,247 European-Americans (EA) and 3,238 African-Americans (AA) from three prospective cohort studies. A TG genetic risk score (GRS) was calculated based on 31 validated single nucleotide polymorphisms (SNPs). We considered several baseline covariates, including body- mass index (BMI) and lipid traits. Among EA and AA, we find, as expected, that baseline levels of TG are strongly positively associated with incident T2D (p<2 x 10-10). However, the TG GRS is negatively associated with T2D (p=0.013), upon adjusting for only race, in the full dataset. Upon additionally adjusting for age, sex, BMI, high-density lipoprotein cholesterol and TG, the TG GRS is significantly and negatively associated with T2D incidence (p=7.0 x 10-8), with similar trends among both EA and AA. No single SNP appears to be driving this association. We also find a significant statistical interaction of the TG GRS with TG (pinteraction=3.3 x 10-4), whereby the association of TG with incident T2D is strongest among those with low genetic risk for TG. Further research is needed to understand the likely pleiotropic mechanisms underlying these findings, and to clarify the causal relationship between T2D and TG.  相似文献   
10.
Genome stability is jeopardized by imbalances of the dNTP pool; such imbalances affect the rate of fork progression. For example, cytidine deaminase (CDA) deficiency leads to an excess of dCTP, slowing the replication fork. We describe here a novel mechanism by which pyrimidine pool disequilibrium compromises the completion of replication and chromosome segregation: the intracellular accumulation of dCTP inhibits PARP-1 activity. CDA deficiency results in incomplete DNA replication when cells enter mitosis, leading to the formation of ultrafine anaphase bridges between sister-chromatids at “difficult-to-replicate” sites such as centromeres and fragile sites. Using molecular combing, electron microscopy and a sensitive assay involving cell imaging to quantify steady-state PAR levels, we found that DNA replication was unsuccessful due to the partial inhibition of basal PARP-1 activity, rather than slower fork speed. The stimulation of PARP-1 activity in CDA-deficient cells restores replication and, thus, chromosome segregation. Moreover, increasing intracellular dCTP levels generates under-replication-induced sister-chromatid bridges as efficiently as PARP-1 knockdown. These results have direct implications for Bloom syndrome (BS), a rare genetic disease combining susceptibility to cancer and genomic instability. BS results from mutation of the BLM gene, encoding BLM, a RecQ 3’-5’ DNA helicase, a deficiency of which leads to CDA downregulation. BS cells thus have a CDA defect, resulting in a high frequency of ultrafine anaphase bridges due entirely to dCTP-dependent PARP-1 inhibition and independent of BLM status. Our study describes previously unknown pathological consequences of the distortion of dNTP pools and reveals an unexpected role for PARP-1 in preventing DNA under-replication and chromosome segregation defects.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号