首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   5篇
  2018年   4篇
  2017年   3篇
  2016年   2篇
排序方式: 共有9条查询结果,搜索用时 78 毫秒
1
1.
Compounds containing nitrogen and sulfur atoms can be widely used in various fields such as industry, medicine, biotechnology and chemical technology. Therefore, the reactions of aminomethylation and alkoxymethylation of mercaptobenzothiazole, mercaptobenzoxazole and 2-aminothiazole were developed. Additionally, the alkoxymethyl derivatives of mercaptobenzoxazole and 2-aminothiazole were synthesized by a reaction with hemiformals, which are prepared by the reaction of alcohols and formaldehyde. In this study, the inhibitory effects of these molecules were investigated against acetylcholinesterase (AChE), butyrylcholinesterase (BChE) enzymes and carbonic anhydrase I, and II isoenzymes (hCA I and II). Both hCA isoenzymes were significantly inhibited by the recently synthesized molecules, with Ki values in the range of 58–157?nM for hCA I, and 81–215?nM for hCA II. Additionally, the Ki parameters of these molecules for BChE and AChE were calculated in the ranges 23–88 and 18–78?nM, respectively.  相似文献   
2.
Compounds containing nitrogen and sulfur atoms can be widely used in various fields, including industry, medicine, biotechnology, and chemical technology. Among them, amides of acids and heterocyclic compounds have an important place. These amides and thiazolidine‐4‐ones showed good inhibitory action against butyrylcholinesterase (BChE), acetylcholinesterase (AChE), and human carbonic anhydrase isoforms. AChE exists at high concentrations in the brain and red blood cells. BChE is an important enzyme that is plentiful in the liver, and it is released into the blood in a soluble form. They were demonstrated to have effective inhibition profiles with Ki values of 23.76–102.75 nM against hCA I, 58.92–136.64 nM against hCA II, 1.40–12.86 nM against AChE, and 9.82–52.77 nM against BChE. On the other hand, acetazolamide showed Ki value of 482.63 ± 56.20 nM against hCA I, and 1019.60 ± 163.70 nM against hCA II. Additionally, Tacrine inhibited AChE and BChE, showing Ki values of 397.03 ± 31.66 and 210.21 ± 15.98 nM, respectively.  相似文献   
3.
The thiolation reaction was carried out in a benzene solution at 80°C and p‐substituted ketones and mercaptoacetic acid in a molar ratio (1:4) of in the presence of a catalytic amount of toluene sulfonic acids. The enzyme inhibition activities of the novel amides of 1,1‐bis‐(carboxymethylthio)‐1‐arylethanes derivatives were investigated. These novel amides of 1,1‐bis‐(carboxymethylthio)‐1‐arylethanes derivatives showed good inhibitory action against acetylcholinesterase (AChE) butyrylcholinesterase (BChE), and human carbonic anhydrase I and II isoforms (hCA I and II). AChE inhibitors, interacting with the enzyme as their primary target, are applied as relevant drugs and toxins. Many clinically established drugs are carbonic anhydrase inhibitors, and it is highly anticipated that many more will eventually find their way into the market. The novel synthesized compounds inhibited AChE and BChE with Ki values in the range of 0.64–1.47 nM and 9.11–48.12 nM, respectively. On the other hand, hCA I and II were effectively inhibited by these compounds, with Ki values between 63.27–132.34 and of 29.63–127.31 nM, respectively.  相似文献   
4.
The conversion reactions of pyrimidine‐thiones with nucleophilic reagent were studied during this scientific research. For this purpose, new compounds were synthesized by the interaction between 1,2‐epoxy propane, 1,2‐epoxy butane, and 4‐chlor‐1‐butanol and pyrimidine‐thiones. These pyrimidine‐thiones derivatives ( A–K ) showed good inhibitory action against acetylcholinesterase (AChE), and human carbonic anhydrase (hCA) isoforms I and II. AChE inhibition was in the range of 93.1 ± 33.7–467.5 ± 126.9 nM. The hCA I and II were effectively inhibited by these compounds, with Ki values in the range of 4.3 ± 1.1–9.1 ± 2.7 nM for hCA I and 4.2 ± 1.1–14.1 ± 4.4 nM for hCA II. On the other hand, acetazolamide clinically used as CA inhibitor showed Ki value of 13.9 ± 5.1 nM against hCA I and 18.1 ± 8.5 nM against hCA II. The antioxidant activity of the pyrimidine‐thiones derivatives ( A–K ) was investigated by using different in vitro antioxidant assays, including Cu2+ and Fe3+ reducing, 1,1‐diphenyl‐2‐picrylhydrazyl (DPPH?) radical scavenging, and Fe2+ chelating activities.  相似文献   
5.
During this investigation, N,N′‐bis‐azidomethylamines, N,N′‐bis‐cyanomethylamine, new alkoxymethylamine and chiral derivatives, which are considered to be a new generation of multifunctional compounds, were synthesized, functional properties were investigated, and anticholinergic and antidiabetic properties of those compounds were studied through the laboratory tests, and it was approved that they contain physiologically active compounds rather than analogues. Novel N‐bis‐cyanomethylamine and alkoxymethylamine derivatives were effective inhibitors of the α‐glycosidase, cytosolic carbonic anhydrase I and II isoforms, butyrylcholinesterase (BChE), and acetylcholinesterase (AChE) with Ki values in the range of 0.15–13.31 nM for α‐glycosidase, 2.77–15.30 nM for human carbonic anhydrase isoenzymes I (hCA I), 3.12–21.90 nM for human carbonic anhydrase isoenzymes II (hCA II), 23.33–73.23 nM for AChE, and 3.84–48.41 nM for BChE, respectively. Indeed, the inhibition of these metabolic enzymes has been considered as a promising factor for pharmacologic intervention in a diversity of disturbances.  相似文献   
6.
1-(4-Methylsulfonyl)-2-thione-4-aryl-5-Z-6-methyl and oxyalkyl-imidazoles were synthesized from different tetrahydropyrimidinethiones and aryl sulfonyl chloride. These compunds were tested for metal chelating effects and to determine the phrase in which inhibition occured between two physiologically pertinent compunds and carbonic anhydrase (CA) isozymes I and II (hCA I and II), butyrylcholinesterase (BChE) and acetylcholinesterase (AChE). AChE was detected in high concentrations in the brain and red blood cells. BChE is another enzymes that is abundant available in the liver and released into the blood in a soluble form. Newly synthesized hetaryl sulfonamides exhibited impressive inhibition profiles with Ki values in the range of 1.42–6.58?nM against hCA I, 1.72–7.41?nM against hCA II, 0.20–1.14?nM against AChE and 1.55–5.92?nM against BChE. Moreover, acetazolamide showed Ki values of 43.69?±?6.44?nM against hCA I and 31.67?±?8.39?nM against hCA II. Additionally, tacrine showed Ki values of 25.75?±?3.39?nM and 37.82?±?2.08 against AChE and BChE, respectively.  相似文献   
7.
Tetrahydropyrimidine thiones, which are cyclic thiocarbamides derivatives, were synthesised from thiourea, β-diketones and substituted benzaldehydes. A tautomeric form of these derivatives incorporates the thiol functionality, which is known to interact with metal ions from metalloenzymes active sites, such as the carbonic anhydrases (CAs, EC 4.2.1.1) among others. This is a superfamily of widespread enzymes, which catalyses a crucial biochemical reaction, the reversible hydration of carbon dioxide to bicarbonate and protons (H+). The newly synthesised N-alkyl (aril)-tetrahydropyrimidine thiones were tested for inhibition of the cytosolic human isoforms I and II (hCA I and II). Both isoforms were effectively inhibited by the newly synthesised thiones. Ki values were in the range of 218.5?±?23.9–261.0?±?41.5?pM for hCA I, and of 181.8?±?41.9–273.6?±?41.4?pM for hCA II, respectively. This under-investigated class of derivatives may bring interesting insights in the field of non-sulphonamide CA inhibitors.  相似文献   
8.
[Ni(C11H9N2O5)2(H2O)2]?3(C3H7NO) ( 1 ) and [Co(C11H9N2O5)2(H2O)2]?3(C3H7NO) ( 2 ) are synthesized and characterized by elemental analysis, FT‐IR spectra, magnetic susceptibility, and thermal analysis. In addition, the crystal structure of Ni(II) complex is presented. Both complexes show distorted octahedral geometry. In 1 and 2, metal ions are coordinated by two oxygen atoms of salicylic residue and two nitrogen atoms of maleic amide residue from two ligands, and two oxygen atoms from two water molecules. In this paper, both compounds showed excellent inhibitory effects against human carbonic anhydrase (hCA) isoforms I, and II, α‐glycosidase, acetylcholinesterase (AChE), and butyrylcholinesterase (BChE). Compounds 1 and 2 had Ki values of 18.36 ± 4.38 and 26.61 ± 7.54 nM against hCA I and 13.81 ± 3.02 and 29.56 ± 6.52 nM against hCA II, respectively. On the other hand, their Ki values were found to be 487.45 ± 54.18 and 453.81 ± 118.61 nM against AChE and 199.21 ± 50.35 and 409.41 ± 6.86 nM against BChE, respectively.  相似文献   
9.
2-(Methacryloyloxy)ethyl 6-methyl-2-oxo-4-phenyl-1,2,3,4-tetrahydropyrimidine-5-carboxylate, is a cyclic urea derivative synthesized from urea, 2-(methacryloyloxy) ethyl acetoacetate and substituted benzaldehyde, and tested in terms of the inhibition of two physiologically relevant carbonic anhydrase (CA) isozymes I and II. Acetylcholinesterase (AChE) is found in high concentrations in the red blood cells and brain. Butyrylcholinesterase (BChE) is another enzyme abundantly present in the liver and released into blood in a soluble form. Also, they were tested for the inhibition of AChE and BChE enzymes and demonstrated effective inhibition profiles with Ki values in the range of 429.24–530.80?nM against hCA I, 391.86–530.80?nM against hCA II, 68.48–97.19?nM against AChE and 104.70–214.15?nM against BChE. On the other hand, acetazolamide clinically used as CA inhibitor, showed Ki value of 281.33?nM against hCA I, and 202.70?nM against hCA II. Also, Tacrine inhibited AChE and BChE showed Ki values of 396.03 and 209.21?nM, respectively.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号