首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   17篇
  免费   0篇
  2019年   1篇
  2016年   1篇
  2015年   1篇
  2013年   2篇
  2011年   2篇
  2010年   1篇
  2009年   2篇
  2008年   1篇
  2007年   1篇
  2003年   1篇
  2001年   1篇
  1986年   1篇
  1985年   1篇
  1984年   1篇
排序方式: 共有17条查询结果,搜索用时 15 毫秒
1.
Rapid responses of bacteria to sudden changes in their environment can have important implications for the structure and function of microbial communities. In this study, we used heavy-water stable isotope probing (H2(18)O-SIP) to identify bacteria that respond to soil rewetting. First, we conducted experiments to address uncertainties regarding the H2(18)O-SIP method. Using liquid chromatography-mass spectroscopy (LC-MS), we determined that oxygen from H2(18)O was incorporated into all structural components of DNA. Although this incorporation was uneven, we could effectively separate 18O-labeled and unlabeled DNAs derived from laboratory cultures and environmental samples that were incubated with H2(18)O. We found no evidence for ex vivo exchange of oxygen atoms between DNA and extracellular H2O, suggesting that 18O incorporation into DNA is relatively stable. Furthermore, the rate of 18O incorporation into bacterial DNA was high (within 48 to 72 h), coinciding with pulses of CO2 generated from soil rewetting. Second, we examined shifts in the bacterial composition of grassland soils following rewetting, using H2(18)O-SIP and bar-coded pyrosequencing of 16S rRNA genes. For some groups of soil bacteria, we observed coherent responses at a relatively course taxonomic resolution. Following rewetting, the relative recovery of Alphaproteobacteria, Betaproteobacteria, and Gammaproteobacteria increased, while the relative recovery of Chloroflexi and Deltaproteobacteria decreased. Together, our results suggest that H2(18)O-SIP is effective at identifying metabolically active bacteria that influence soil carbon dynamics. Our results contribute to the ecological classification of soil bacteria while providing insight into some of the functional traits that influence the structure and function of microbial communities under dynamic soil moisture regimes.  相似文献   
2.
Resource partitioning has been suggested as an important mechanism of invasion resistance. The relative importance of resource partitioning for invasion resistance, however, may depend on how species abundance is distributed in the plant community. This study had two objectives. First, we quantified the degree to which one resource, nitrogen (N), is partitioned by time, depth and chemical form among coexisting species from different functional groups by injecting 15N into soils around the study species three times during the growing season, at two soil depths and as two chemical forms. A watering treatment also was applied to evaluate the impact of soil water content on N partitioning. Second, we examined the degree to which native functional groups contributed to invasion resistance by seeding a non-native annual grass into plots where bunchgrasses, perennial forbs or annual forbs had been removed. Bunchgrasses and forbs differed in timing, depth and chemical form of N capture, and these patterns of N partitioning were not affected by soil water content. However, when we incorporated abundance (biomass) with these relative measures of N capture to determine N sequestration by the community there was no evidence suggesting that functional groups partitioned different soil N pools. Instead, dominant bunchgrasses acquired the most N from all soil N pools. Consistent with these findings we also found that bunchgrasses were the only functional group that inhibited annual grass establishment. At natural levels of species abundance, N partitioning may facilitate coexistence but may not necessarily contribute to N sequestration and invasion resistance by the plant community. This suggests that a general mechanism of invasion resistance may not be expected across systems. Instead, the key mechanism of invasion resistance within a system may depend on trait variation among coexisting species and on how species abundance is distributed in the system.  相似文献   
3.
Following an invasion of exotic annual grasses into California oak woodlands, grass species dominance shifted from native perennials to exotic annuals. In combination with other ecosystem and species characteristics, species-specific N preferences may influence species coexistence and dominance. If species N preferences follow dominance patterns in California oak woodlands, then the more dominant exotic grasses should prefer the most abundant inorganic soil N form (NH4+), while the subordinate native grasses should prefer the less available inorganic (NO3?) or organic (glycine) soil N forms. To investigate this prediction, we applied 15N-labeled NH4+, NO3?, and glycine to soil and measured % 15N recovery by two dominant annual grasses (Bromus diandrus and Bromus hordeaceus) and two subordinate perennial grasses (Elymus glaucus and Nassella pulchra). As expected, shoots of B. diandrus recovered more 15N-NH4+ (74%) than either 15N-NO3? (51%) or 15N-glycine (39%). B. diandrus also captured at least 3.2 times more 15N-NH4+ than subordinate grasses. Dominant B. hordeaceus, however, demonstrated no N form preferences. As hypothesized, shoots of subordinate E. glaucus and N. pulchra recovered 2.1–2.3 times more 15N-NO3? than 15N-NH4+ and increased %N by 4.8–5.7% in response to the application of 15N-NO3?. Both subordinate grasses did not prefer 15N-glycine over 15N-NH4+, suggesting that the importance of this N form in structuring species coexistence in California oak woodlands is minimal. These results support our theory that species N preferences follow dominance patterns in California oak woodlands. To further understand the role of these species-specific N preferences in structuring dominance, the importance of N form versus such characteristics as rooting distribution and species phenologies needs to be explored in the presence of interspecific competition.  相似文献   
4.
The present study was initiated to determine whether dietary supplemental L-carnitine and ascorbic acid affect growth performance, carcass yield and composition, abdominal fat and plasma L-carnitine concentration of broiler chicks reared under normal and high temperature. During the experiment, two temperature regimes were employed in two experimental rooms, which were identical but different in environmental temperature. The regimes were thermoneutral (20-22°C for 24 h) or recycling hot (34-36°C for 8 h and 20-22°C for 16 h). One-day-old broiler chicks (ROSS) were used in the experiment. A 2 x 2 x 2 factorial arrangement was employed with two levels (0 and 50 mg/kg) of supplemental L-carnitine and two levels (0 or 500 mg/kg) of supplemental ascorbic acid in drinking water under thermoneutral or high temperature regimes. Body weight gain was affected by high temperature. However, body weight gain was significantly improved in animals receiving supplemental L-carnitine, ascorbic acid or L-carnitine + ascorbic acid compared to animals receiving unsupplemented diet under high temperature. On the other hand, supplemental L-carnitine or L-carnitine + ascorbic acid reduced body weight gain under thermoneutral condition. Supplemental ascorbic acid significantly improved feed conversion efficiency, the improvement was relatively greater under high temperature. The L-carnitine content in the plasma was higher in the groups receiving supplemental L-carnitine and ascorbic acid under high temperature, while broilers fed supplemental L-carnitine and ascorbic acid had a decreased level of plasma L-carnitine concentration under normal temperature. It is concluded that dietary supplemental L-carnitine or L-carnitine + ascorbic acid may have positive effects on body weight gain, carcass weight under high temperature conditions.  相似文献   
5.
Body weight (BW) reductions of more than 4 kg have been observed during diving with the open hot water suit, a technique in which heated seawater (SW) continuously floods the skin surface. To test the hypothesis that osmotic effects may be involved in these fluid-loss processes, head-out immersion experiments in 38 degrees C freshwater (FW) and SW for 4 h were performed. Average BW reduction was 2.5 and 1.9 kg in SW and FW head-out immersion, respectively (P < 0.01). Atrial natriuretic peptide increased during the first 30 min of SW immersion (5.6-13.4 pmol/l, P < 0.01) followed by a reduction to 7.6 pmol/l (P < 0.01). This paralleled an initial decrease in aldosterone (from 427 to 306 pmol/l, P < 0.05) followed by an increase to 843 pmol/l (P < 0.01). The effects of temperature on fluid loss were studied in thermoneutral (34.5 degrees C) and 38 degrees C SW for 2 h. In thermoneutral SW, calculated sweat production was negligible (0.05 kg) compared with 1.2 kg in warm SW. We recommend that, if a dive is planned to last for more than 4 h, a mandatory break for fluid intake should be incorporated in the diving regulations.  相似文献   
6.
Shifts in the seasonal timing of rainfall have the potential to substantially affect the immense terrestrial stores of soil organic carbon (C, SOC). It remains unclear, however, how changes in the timing of rainfall are influencing SOC storage. We hypothesized that a sustained shift in rainfall timing from winter to a spring-summer regime would reduce desert SOC stores by creating moist and warm soil conditions, thus promoting decomposition. To investigate this, we evaluated how an 11-year seasonal shift in rainfall (winter to spring-summer regime) affected SOC storage (that is, dissolved organic C, light SOC, and heavy SOC) in soils beneath dominant shrub and perennial grass species in a cold desert sagebrush-steppe ecosystem. We also measured the soil C to nitrogen (N) ratios, standing litter stocks, and root biomass C to help interpret the long-term changes in SOC stores. As predicted, a seasonal shift in rainfall caused heavy SOC to decline beneath Artemisia tridentata ssp. wyomingensis by 14%, from 3.1 to 2.7 kg C m−2, and Pseudoroegneria spicata by 19%, from 3.0 to 2.4 kg C m−2. Neither dissolved organic C, nor the light fraction, responded to changes in rainfall. The C to N ratio of heavy SOC beneath Artemisia declined by at least 6% under the warmer and moister conditions of the spring-summer regime, suggesting that alterations in decomposition dynamics contributed to the loss of SOC. Unexpectedly, coarse litter and root C in Artemisia soils were lower under the spring-summer than winter rainfall regime, suggesting that a decline in litter inputs may also have contributed to the loss of SOC. The C to N ratio of heavy SOC, litter stores (that is, coarse litter and thatch), and root C in Pseudoroegneria soils demonstrated similar responses as in Artemisia soils, but these variables were at best only marginally significant. Our results suggest that a sustained seasonal shift in rainfall from winter to spring-summer will reduce heavy SOC across cold deserts, and that this reduction will stem from alterations in decomposition dynamics and net primary production by plants. Further, as global temperatures rise we may see more overlap of moist and warm soil conditions, especially in ecosystems with winter rainfall regimes (for example, Mediterranean-climate ecosystems and temperate forests), that may reduce SOC in the absence of rainfall changes.  相似文献   
7.
Cardiac output and organ blood flow to major organs were investigated in awake rats at 1 atmosphere absolute (ATA) air and at 71 ATA He-O2. Radioactively labeled microspheres [15 +/- 1 (SD) micron] were injected into the left ventricle during constant-rate arterial blood sampling at 1 ATA air and subsequently at 71 ATA He-O2. Intra-arterial blood pressure was continuously recorded. The partial pressure of O2 was kept between 0.4 and 0.6 ATA. The results indicate that the mean blood pressure, heart rate, cardiac output, and organ blood flow are essentially unaltered in the rat at 71 ATA except for increased blood flow to the liver (122%, P less than 0.05), whereas the blood flow to the adrenals, the diaphragm, and the leg muscle fell (P less than 0.05).  相似文献   
8.
Roots influence root litter decomposition through multiple belowground processes. Hydraulic lift or redistribution (HR) by plants is one such process that creates diel drying–rewetting cycles in soil. However, it is unclear if this phenomenon influences decomposition. Since decomposition in deserts is constrained by low soil moisture and is stimulated when dry soils are rewetted, we hypothesized that diel drying–rewetting, via HR, stimulates decomposition of root litter. We quantified the decomposition of root litter from two desert shrubs, Artemisia tridentata ssp. tridentata and Sarcobatus vermiculatus, during spring and summer in field soil core treatments designed to have abundant roots and high magnitude HR cycles (DenseRoot) or few roots and low magnitude HR (SparseRoot). To help explain our decomposition results, we not only evaluated HR, but multiple factors (i.e., soil moisture, soil temperature, dissolved soil organic C concentrations, and litter chemistry) that are often influenced by roots and regulate decomposition. Root length density in the DenseRoot treatment was at least four times higher than in the SparseRoot treatment for both Artemisia and Sarcobatus by the beginning of spring. During spring and summer, there was only one instance when decomposition rates differed between the treatments. This occurred in soils beneath Artemisia in the summer when decomposition rates were 25% higher in the DenseRoot than in the SparseRoot treatments. Of the factors evaluated, only a threefold increase in the magnitude of drying–rewetting cycles created by HR in the DenseRoot compared to the SparseRoot treatment coincided with this change in decomposition. Additionally, the lower soil Ψw present in the Artemisia DenseRoot treatment should have resulted in a decline in decomposition rates, but the presence of higher magnitude HR cycles seemed to nullify this effect. There was no evidence of this result in Sarcobatus soils, possibly due to Sarcobatus only creating HR cycles for a short period of time in the summer before soil Ψw dropped below ?7 MPa. As hypothesized, our results suggest that the presence of high magnitude HR cycles stimulated decomposition. The most plausible mechanism for this stimulation; however, was not solely due to HR drying–rewetting cycles but HR creating a diel rhythm of root-driven water fluxes and rhizodeposition. These together heightened microbial activity and, subsequently, enhanced the decomposition of surrounding litter. Our findings are the first field data supporting suggestions that HR influences belowground ecosystem processes and demonstrates that this relationship is seasonally variable.  相似文献   
9.
Soil respiration from grasslands plays a critical role in determining carbon dioxide (CO2) feedbacks between soils and the atmosphere. In these often mesic systems, soil moisture and temperature tend to co-regulate soil respiration. Increasing variance of rainfall patterns may alter aboveground–belowground interactions and have important implications for the sensitivity of soil respiration to fluctuations in moisture and temperature. We conducted a set of field experiments to evaluate the independent and interactive effects of rainfall variability and plant–soil processes on respiration dynamics. Plant removal had strong effects on grassland soils, which included altered CO2 flux owing to absence of root respiration; increased soil moisture and temperature; and reduced availability of dissolved organic carbon (DOC) for heterotrophic respiration by microorganisms. These plant-mediated effects interacted with our rainfall variability treatments to determine the sensitivity of soil respiration to both moisture and temperature. Using time-series multiple regression, we found that plants dampened the sensitivity of respiration to moisture under high variability rainfall treatments, which may reflect the relative stability of root contributions to total soil respiration. In contrast, plants increased the sensitivity of respiration to temperature under low variability rainfall treatment suggesting that the environmental controls on soil CO2 dynamics in mesic habitats may be context dependent. Our results provide insight into the aboveground–belowground mechanisms controlling respiration in grasslands under variable rainfall regimes, which may be important for predicting CO2 dynamics under current and future climate scenarios.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号