首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Shifts in the seasonal timing of rainfall have the potential to substantially affect the immense terrestrial stores of soil organic carbon (C, SOC). It remains unclear, however, how changes in the timing of rainfall are influencing SOC storage. We hypothesized that a sustained shift in rainfall timing from winter to a spring-summer regime would reduce desert SOC stores by creating moist and warm soil conditions, thus promoting decomposition. To investigate this, we evaluated how an 11-year seasonal shift in rainfall (winter to spring-summer regime) affected SOC storage (that is, dissolved organic C, light SOC, and heavy SOC) in soils beneath dominant shrub and perennial grass species in a cold desert sagebrush-steppe ecosystem. We also measured the soil C to nitrogen (N) ratios, standing litter stocks, and root biomass C to help interpret the long-term changes in SOC stores. As predicted, a seasonal shift in rainfall caused heavy SOC to decline beneath Artemisia tridentata ssp. wyomingensis by 14%, from 3.1 to 2.7 kg C m−2, and Pseudoroegneria spicata by 19%, from 3.0 to 2.4 kg C m−2. Neither dissolved organic C, nor the light fraction, responded to changes in rainfall. The C to N ratio of heavy SOC beneath Artemisia declined by at least 6% under the warmer and moister conditions of the spring-summer regime, suggesting that alterations in decomposition dynamics contributed to the loss of SOC. Unexpectedly, coarse litter and root C in Artemisia soils were lower under the spring-summer than winter rainfall regime, suggesting that a decline in litter inputs may also have contributed to the loss of SOC. The C to N ratio of heavy SOC, litter stores (that is, coarse litter and thatch), and root C in Pseudoroegneria soils demonstrated similar responses as in Artemisia soils, but these variables were at best only marginally significant. Our results suggest that a sustained seasonal shift in rainfall from winter to spring-summer will reduce heavy SOC across cold deserts, and that this reduction will stem from alterations in decomposition dynamics and net primary production by plants. Further, as global temperatures rise we may see more overlap of moist and warm soil conditions, especially in ecosystems with winter rainfall regimes (for example, Mediterranean-climate ecosystems and temperate forests), that may reduce SOC in the absence of rainfall changes.  相似文献   

2.
The exotic annual grass Bromus tectorum has replaced thousands of hectares of native perennial vegetation in semi-arid ecosystems of the western United States. Inorganic N availability and production were compared in soil from monodominant patches of Bromus tectorum, the perennial bunchgrass Elymus elymoides, and the shrub Artemisia tridentata, in Curlew Valley, a salt-desert shrub site in Northern Utah. Bromus-dominated soil had greater %N in the top 10 cm than Artemisia or Elymus-dominated soils. As determined by spring isotope-dilution assays, gross mineralization and nitrification rates were higher in Bromus-dominated than Artemisia-dominated soils, but gross rates of NH4 + and NO3 consumption were also higher. Litterbags had greater mass loss and N mineralization when buried in Bromus stands than in Artemisia stands, indicating the soil environment under the annual grass promotes decomposition. As determined by nitrification potential assays, nitrifier populations were higher under Bromus than under Artemisia and Elymus. Soil inorganic N concentrations were similar among vegetation types in the spring, but NO3 accumulated under Bromus once it had senesced. An in situ net mineralization assay conducted in autumn indicated that germinating Bromus seedlings are a strong sink for soil NO3 , and that net nitrification is inherently low in soils under Artemisia and Elymus. Results of the study suggest that differences in plant uptake and the soil environment promote greater inorganic N availability under Bromus than under perennial species at the site.  相似文献   

3.
4.
Climate change and atmospheric nitrogen (N) deposition are two of the most important global change drivers. However, the interactions of these drivers have not been well studied. We aimed to assess how the combined effect of soil N additions and more frequent soil drying–rewetting events affects carbon (C) and N cycling, soil:atmosphere greenhouse gas (GHG) exchange, and functional microbial diversity. We manipulated the frequency of soil drying–rewetting events in soils from ambient and N‐treated plots in a temperate forest and calculated the Orwin & Wardle Resistance index to compare the response of the different treatments. Increases in drying–rewetting cycles led to reductions in soil levels, potential net nitrification rate, and soil : atmosphere GHG exchange, and increases in and total soil inorganic N levels. N‐treated soils were more resistant to changes in the frequency of drying–rewetting cycles, and this resistance was stronger for C‐ than for N‐related variables. Both the long‐term N addition and the drying–rewetting treatment altered the functionality of the soil microbial population and its functional diversity. Our results suggest that increasing the frequency of drying–rewetting cycles can affect the ability of soil to cycle C and N and soil : atmosphere GHG exchange and that the response to this increase is modulated by soil N enrichment.  相似文献   

5.
Soil moisture affects belowground activity in grasslands, but the effects of summer drought on different soil C fluxes is uncertain. Soil respiration (SR), dissolved organic carbon (DOC) leaching and their components may all respond differently and drought effects will interact with other factors such as temperature, making a priori predictions of soil C balances difficult. In this study, we used rain shelters to simulate summer droughts by reducing annual precipitation by around 30 % in three managed grassland sites at 400, 1,000 and 2,000 m a.s.l. in Switzerland covering a gradient in mean annual temperatures of 7.5 °C. During the growing season, we quantified the impacts of drought on SR, DOC leaching, litter decomposition and the contribution of 13C-depleted litter to DOC fluxes. Along the elevational gradient, SR rates did not decrease with increasing altitude. Thus, SR was higher at a given temperature at higher altitudes, which probably reflects more labile soil C and hence greater substrate availability in a colder climate. Fluxes of DOC at 5 cm depth were a magnitude smaller than SR and did not show a pattern with elevation. At all altitudes, the experimental summer drought significantly reduced SR rates by 25–57 % and DOC leaching by 80–100 %, with a declining contribution of 13C-depleted litter-DOC. The remaining litter mass after drought was two to seven times larger as compared to the control. We did not observe a strong C release upon rewetting and hence, there was no compensation for the reduced soil C fluxes during drought. The more sensitive drought response in the litter layer than in the deeper soil and the declining DOC fluxes indicate an altered soil C balance with a C preservation in the topsoil, but ongoing losses of probably ‘older’ C in subsoils under drought.  相似文献   

6.
Climatic change, such as increases in extreme drought and rainfall events and changes in rainfall intensity and pattern, has been strongly influencing soil moisture. The climatic change impact is particularly common in arid, semi-arid and Mediterranean regions, which is causing dramatic changes in the intensity and frequency of soil drying–rewetting cycles. The soil drying–rewetting cycle is a natural phenomenon that the soil experiences drying, then wetting, and then drying and rewetting again and again. When a dry soil is being rewetted, the amount of soil microbial biomass and its activity can be sharply increasing in a short time period, and then a large amount of gaseous carbon (C) and nitrogen (N) erupts from the soil. The sudden release of gaseous C and N is caused by the stimulation of the soil microbes. Such a phenomenon is called “Birch effect”. The drying–rewetting cycles have direct and indirect effects on soil microbes, and soil microbial responses to the drying and rewetting events play an important role in the feedbacks of terrestrial ecosystems. From aspects of soil microbial biomass, microbial activities and microbial structure, we review recent advances on studies regarding microbial responses to soil drying–rewetting cycles. We interpret the microbial responses using five different types of mechanisms: (1) Microbial stress mechanism: when a soil becomes dry, microorganisms must accumulate compatible solutes such as carbohydrates and aminoacids so that the soil microbes can equilibrate with their environment in order to avoid dehydrating and being killed. When the soil is rewetted, soil microbes must dispose of those osmolytes rapidly by transforming them into carbon dioxide (CO2), dissolved organic carbon (DOC) and nutrients in order to prevent water from being flowing into the cells. (2) Substrate supply mechanism: low soil moisture may result in the physical disruption of soil aggregates which leads to the exposure of new soil surfaces and of previously protected organic matter. When the soil is rewetted, its physical structure is further disrupted by swelling. The increased new soil surfaces and previously protected organic matter will improve the microorganism’s nutrient availability. (3) Soil hydrophobicity mechanism: soil hydrophobicity can cause the reduction of soil moisture and nutrient availability and inhibition of microbial decomposition of soil organic matter. Therefore, soil hydrophobicity is an important factor of explaining the activity of microorganism in drying and rewetting events. (4) Diffusive limitations mechanism: transportation of the soil microbe is limited in a dry soil. When soil moisture is increasing, soil microbial activity is enhanced along with the increased availability of substrate nutrients. (5) Predation mechanism: a moist soil is usually conducive to the increase of bacteria and fungi populations. In response, protozoa and nematodes also increase, leading to the fluctuation of the soil microbial community structure. On the basis of the literature review, we propose five important aspects to be considered in the future: (1) assessing soil microbes’ concrete adapting ways to the drying–rewetting cycles, (2) evaluating the microbial responses to the drying–rewetting cycles based on suitable indicators, (3) interpreting microbial responses to the drying–rewetting cycles by combining field investigation and laboratory controlling experiment, (4) investigating the microbial responses to the drying–rewetting cycles at different temporal and spatial scales.  相似文献   

7.

Aims

There are few studies on the interactive effect of salinity and sodicity in soils exposed to drying and wetting cycles. We conducted a study to assess the impact of multiple drying and wetting on microbial respiration, dissolved organic carbon and microbial biomass in saline and saline-sodic soils.

Methods

Different levels of salinity (EC1:5 1.0 or 2.5) and sodicity (SAR?<?3 or 20) were induced by adding NaCl and CaCl2 to a non-saline/non-sodic soil. Finely ground wheat straw residue was added at 20?g?kg?1 as substrate to stimulate microbial activity. The constant moist (CM) treatment was kept at optimum moisture content for the length of the experiment. The drying and rewetting (DW) treatments consisted of 1 to 3 DW cycles; each DW cycle consisted of 1?week drying after which they were rewet to optimum moisture and then maintained moist for 1?week.

Results

Drying reduced respiration more strongly at EC2.5 than with EC1.0. Rewetting of dry soils produced a flush in respiration which was greatest in the soils without salt addition and smallest at high salinity (EC2.5) suggesting better substrate utilisation by microbes in soils without added salts. After three DW events, cumulative respiration was significantly increased by DW compared to CM, being 24% higher at EC1.0 and 16% higher at EC2.5 indicating that high respiration rates after rewetting may compensate for the low respiration rates during the dry phase. The respiration rate per unit MBC was lower at EC2.5 than at EC1.0. Further, the size of the flush in respiration upon rewetting decreased with each ensuing DW cycle being 50–70% lower in the third DW cycle than the first.

Conclusions

Both salinity and sodicity alter the effect of drying and rewetting on soil carbon dynamics compared to non-saline soils.  相似文献   

8.
Soil drying and rewetting represents a common physiological stress for the microbial communities residing in surface soils. A drying–rewetting cycle may induce lysis in a significant proportion of the microbial biomass and, for a number of reasons, may directly or indirectly influence microbial community composition. Few studies have explicitly examined the role of drying–rewetting frequency in shaping soil microbial community structure. In this experiment, we manipulated soil water stress in the laboratory by exposing two different soil types to 0, 1, 2, 4, 6, 9, or 15 drying–rewetting cycles over a 2-month period. The two soils used for the experiment were both collected from the Sedgwick Ranch Natural Reserve in Santa Ynez, CA, one from an annual grassland, the other from underneath an oak canopy. The average soil moisture content over the course of the incubation was the same for all samples, compensating for the number of drying–rewetting cycles. At the end of the 2-month incubation we extracted DNA from soil samples and characterized the soil bacterial communities using the terminal restriction fragment length polymorphism (T-RFLP) method. We found that drying–rewetting regimes can influence bacterial community composition in oak but not in grass soils. The two soils have inherently different bacterial communities; only the bacteria residing in the oak soil, which are less frequently exposed to moisture stress in their natural environment, were significantly affected by drying–rewetting cycles. The community indices of taxonomic diversity and richness were relatively insensitive to drying–rewetting frequency. We hypothesize that drying–rewetting induced shifts in bacterial community composition may partly explain the changes in C mineralization rates that are commonly observed following exposure to numerous drying–rewetting cycles. Microbial community composition may influence soil processes, particularly in soils exposed to a significant level of environmental stress.  相似文献   

9.
The Arctic climate is projected to change during the coming century, with expected higher air temperatures and increased winter snowfall. These climatic changes might alter litter decomposition rates, which in turn could affect carbon (C) and nitrogen (N) cycling rates in tundra ecosystems. However, little is known of seasonal climate change effects on plant litter decomposition rates and N dynamics, hampering predictions of future arctic vegetation composition and the tundra C balance. We tested the effects of snow addition (snow fences), warming (open top chambers), and shrub removal (clipping), using a full-factorial experiment, on mass loss and N dynamics of two shrub tissue types with contrasting quality: deciduous shrub leaf litter (Salix glauca) and evergreen shrub shoots (Cassiope tetragona). We performed a 10.5-month decomposition experiment in a low-arctic shrub tundra heath in West-Greenland. Field incubations started in late fall, with harvests made after 249, 273, and 319 days of field incubation during early spring, summer and fall of the next year, respectively. We observed a positive effect of deeper snow on winter mass loss which is considered a result of observed higher soil winter temperatures and corresponding increased winter microbial litter decomposition in deep-snow plots. In contrast, warming reduced litter mass loss during spring, possibly because the dry spring conditions might have dried out the litter layer and thereby limited microbial litter decomposition. Shrub removal had a small positive effect on litter mass loss for C. tetragona during summer, but not for S. glauca. Nitrogen dynamics in decomposing leaves and shoots were not affected by the treatments but did show differences in temporal patterns between tissue types: there was a net immobilization of N by C. tetragona shoots after the winter incubation, while S. glauca leaf N-pools were unaltered over time. Our results support the widely hypothesized positive linkage between winter snow depth and litter decomposition rates in tundra ecosystems, but our results do not reveal changes in N dynamics during initial decomposition stages. Our study also shows contrasting impacts of spring warming and snow addition on shrub decomposition rates that might have important consequences for plant community composition and vegetation-climate feedbacks in rapidly changing tundra ecosystems.  相似文献   

10.
The effect of soil drying on humus decomposition and nitrogen availability   总被引:33,自引:2,他引:31  
Summary Respirometer experiments show that when a dry soil is moistened a characteristic pattern of decomposition occurs in which an initial period of relatively rapid decomposition (Stage 1) falls, during a few days, to a slow steady rate (Stage 2). This pattern is repetitive with successive dryings and rewettings and is common to all soils so far investigated. The magnitude of decomposition depends in the percent carbon in the soil and on the drying conditions, air-drying being less effective than oven-drying. Decomposition during Stage 1 conforms approximately to a first-order reaction and proportionate amounts of nitrogen are mineralised. A similar pattern of decomposition occurs under field conditions throughout successive wet and dry seasons.Evidence is presented to show that decomposition involves direct microbial attack of the solid organic substrate and that the recurrent pattern of decomposition is due to the state in which the microbial population is left after drying and its subsequent behaviour on rewetting. The rapid decline in the rate of decomposition on rewetting (Stage 1) appears not to involve (1) the development of toxic conditions, (b) physical changes in the soil (since similar patterns of decomposition also occur with organic material alone or in sand) or (c) rapid decomposition of organic material made soluble by drying.The operation and repetition of this pattern of decomposition in the field has important consequences in the rundown of soil carbon and the mineralisation of soil nitrogen particularly where well-defined wet and dry seasons occur. These consequences are discussed in relation to climate and certain agricultural practices.  相似文献   

11.
We tested expectations that two desert shrubs would differ in germination and seedling relative growth rate (RGR) responses to Na and Ψs stress. The study species, Chrysothamnus nauseosus ssp. consimilis and Sarcobatus vermiculatus (hereafter referred to by genus), differ in their distribution along salinity gradients, with Chrysothamnus inhabiting only less saline areas. In growth chamber studies, declining Ψs (−0.82 to −2.71 MPa) inhibited germination of both species, and Chrysothamnus was less tolerant of Ψs stress than Sarcobatus. Germination fell below 10% for Chrysothamnus at −1.64 MPa (NaCl and PEG), and for Sarcobatus at −2.4 MPa PEG. Neither species exhibited ion toxicity. There was substantial ion enhancement for Sarcobatus in lower Ψs, allowing for 40% germination in −2.71 MPa NaCl. For seedling RGR, species were not different at −0.29 or −0.82 MPa (0 and 100 mmol/L NaCl, respectively), but Chrysothamnus RGR declined substantially at −1.3 MPa (200 mmol/L NaCl). The greater stress tolerance of Sarcobatus was not associated with a lower RGR under nonsaline conditions. Species differences in seed and seedling Ψs stress tolerance probably contribute to the restricted distribution of Chrysothamnus to less saline areas. The Na uptake of Sarcobatus seedlings enhances its ability to deal with declining Ψs and establish in more saline areas.  相似文献   

12.
Based on current climate scenarios, a higher frequency of summer drought periods followed by heavy rainfall events is predicted for Central Europe. It is expected that drying/rewetting events induce an increased matter cycling in soils and may contribute considerably to increased emissions of the greenhouse gas N2O on annual scales. To investigate the influence of drying/rewetting events on N2O emissions in a mature Norway spruce forest in the Fichtelgebirge area (NE Bavaria, Germany), a summer drought period of 46 days was induced by roof installations on triplicate plots, followed by a rewetting event of 66 mm experimental rainfall in 2 days. Three nonmanipulated plots served as controls. The experimentally induced soil drought was accompanied by a natural drought. During the drought period, the soil of both the throughfall exclusion and control plots served as an N2O sink. This was accompanied by subambient N2O concentrations in upper soil horizons. The sink strength of the throughfall exclusion plots was doubled compared with the control plots. We conclude that the soil water status together with the soil nitrate availability was an important driving factor for the N2O sink strength. Rewetting quickly turned the soil into a source for atmospheric N2O again, but it took almost 4 months to turn the cumulative soil N2O fluxes from negative (sink) to positive (source) values. N2O concentration and isotope analyses along soil profiles revealed that N2O produced in the subsoil was subsequently consumed during upward diffusion along the soil profile throughout the entire experiment. Our results show that long drought periods can lead to drastic decreases of N2O fluxes from soils to the atmosphere or may even turn forest soils temporarily to N2O sinks. Accumulation of more field‐scale data on soil N2O uptake as well as a better understanding of underlying mechanisms would essentially advance our knowledge of the global N2O budget.  相似文献   

13.
Contrasting soil respiration in young and old-growth ponderosa pine forests   总被引:14,自引:0,他引:14  
Three years of fully automated and manual measurements of soil CO2 efflux, soil moisture and temperature were used to explore the diel, seasonal and inter‐annual patterns of soil efflux in an old‐growth (250‐year‐old, O site) and recently regenerating (14‐year‐old, Y site) ponderosa pine forest in central Oregon. The data were used in conjunction with empirical models to determine which variables could be used to predict soil efflux in forests of contrasting ages and disturbance histories. Both stands experienced similar meteorological conditions with moderately cold wet winters and hot dry summers. Soil CO2 efflux at both sites showed large inter‐annual variability that could be attributed to soil moisture availability in the deeper soil horizons (O site) and the quantity of summer rainfall (Y site). Seasonal patterns of soil CO2 efflux at the O site showed a strong positive correlation between diel mean soil CO2 efflux and soil temperature at 64 cm depth whereas diel mean soil efflux at the Y site declined before maximum soil temperature occurred during summer drought. The use of diel mean soil temperature and soil water potential inferred from predawn foliage water potential measurements could account for 80% of the variance of diel mean soil efflux across 3 years at both sites, however, the functional shape of the soil water potential constraint was site‐specific. Based on the similarity of the decomposition rates of litter and fine roots between sites, but greater productivity and amount of fine litter detritus available for decomposition at the O site, we would expect higher rates of soil CO2 efflux at the O site. However, annual rates were only higher at the O site in one of the 3 years (597 ± 45 vs. 427 ± 80 g C m?2). Seasonal patterns of soil efflux at both sites showed influences of soil water limitations that were also reflected in patterns of canopy stomatal conductance, suggesting strong linkages between above and below ground processes.  相似文献   

14.
Many Arctic regions are currently experiencing substantial summer and winter climate changes. Litter decomposition is a fundamental component of ecosystem carbon and nutrient cycles, with fungi being among the primary decomposers. To assess the impacts of seasonal climatic changes on litter fungal communities and their functioning, Betula glandulosa leaf litter was surface‐incubated in two adjacent low Arctic sites with contrasting soil moisture regimes: dry shrub heath and wet sedge tundra at Disko Island, Greenland. At both sites, we investigated the impacts of factorial combinations of enhanced summer warming (using open‐top chambers; OTCs) and deepened snow (using snow fences) on surface litter mass loss, chemistry and fungal decomposer communities after approximately 1 year. Enhanced summer warming significantly restricted litter mass loss by 32% in the dry and 17% in the wet site. Litter moisture content was significantly reduced by summer warming in the dry, but not in the wet site. Likewise, fungal total abundance and diversity were reduced by OTC warming at the dry site, while comparatively modest warming effects were observed in the wet site. These results suggest that increased evapotranspiration in the OTC plots lowered litter moisture content to the point where fungal decomposition activities became inhibited. In contrast, snow addition enhanced fungal abundance in both sites but did not significantly affect litter mass loss rates. Across sites, control plots only shared 15% of their fungal phylotypes, suggesting strong local controls on fungal decomposer community composition. Nevertheless, fungal community functioning (litter decomposition) was negatively affected by warming in both sites. We conclude that although buried soil organic matter decomposition is widely expected to increase with future summer warming, surface litter decay and nutrient turnover rates in both xeric and relatively moist tundra are likely to be significantly restricted by the evaporative drying associated with warmer air temperatures.  相似文献   

15.
Abstract. The growth rate of Eucalyptus regnans seedlings in their first year can be much increased if the soil is first dried and then rewetted. The ratio of growth on predried soil to growth on undried soil (the Growth Ratio or GR) reaches a maximum at air-dryness (pF 6.0–6.4). In E. regnans forest soil, GR is greatest in humus-rich topsoil and declines with depth. The effect of air-drying persists for several months after rewetting when soil is stored under glasshouse conditions. It is largely unaffected by repeated drying and wetting, by the rate of drying or by the season of collection. The mixing of dried and undried soil or the placement of a layer of dried soil above undried soil produces an enhancement of growth proportional to the amount of dried soil added. Firing of a litter layer above soil at wilting point increases subsequent seedling growth to that in air-dried soil. The addition of ash from a litter fire to undried soil produces an increase in growth approximately equal to that caused by air-drying The drying effect is most pronounced in soils from mature E. regnans forest and nearby brackenland and is less in dense younger forest, frost-hollow grasslands and old grassy gaps in the mature forest. The effect is restored by the inoculation of E. regnans mycorrhizal roots from both dried and undried soil. The effect varies along an gradient from 500 to 1500 m a.s.l. and is a maximum in the wet E. regnans climatic zone and a minimum in zones or local aspects where forests are normally subject to frequent drying. The stimulatory effect on seedling growth in soils of the E. regnans zone may have an effect on the outcome of competition during regeneration in large gaps. Part of the growth responses previously ascribed to the ‘ash-bed’ effect may be due to the desiccation effect in these soils.  相似文献   

16.
Climate change will alter precipitation patterns with consequences for soil C cycling. An understanding of how fluctuating soil moisture affects microbial processes is therefore critical to predict responses to future global change. We investigated how long‐term experimental field drought influences microbial tolerance to lower moisture levels (“resistance”) and ability to recover when rewetted after drought (“resilience”), using soils from a heathland which had been subjected to experimental precipitation reduction during the summer for 18 years. We tested whether drought could induce increased resistance, resilience, and changes in the balance between respiration and bacterial growth during perturbation events, by following a two‐tiered approach. We first evaluated the effects of the long‐term summer drought on microbial community functioning to drought and drying–rewetting (D/RW), and second tested the ability to alter resistance and resilience through additional perturbation cycles. A history of summer drought in the field selected for increased resilience but not resistance, suggesting that rewetting after drought, rather than low moisture levels during drought, was the selective pressure shaping the microbial community functions. Laboratory D/RW cycles also selected for communities with a higher resilience rather than increased resistance. The ratio of respiration to bacterial growth during D/RW perturbation was lower for the field drought‐exposed communities and decreased for both field treatments during the D/RW cycles. This suggests that cycles of D/RW also structure microbial communities to respond quickly and efficiently to rewetting after drought. Our findings imply that microbial communities can adapt to changing climatic conditions and that this might slow the rate of soil C loss predicted to be induced by future cyclic drought.  相似文献   

17.
Litter decomposition and nutrient mineralization in high-latitude peatlands are constrained by low temperatures. So far, little is known about the effects of seasonal components of climate change (higher spring and summer temperatures, more snow which leads to higher winter soil temperatures) on these processes. In a 4-year field experiment, we manipulated these seasonal components in a sub-arctic bog and studied the effects on the decomposition and N and P dynamics of leaf litter of Calamagrostis lapponica, Betula nana, and Rubus chamaemorus, incubated both in a common ambient environment and in the treatment plots. Mass loss in the controls increased in the order Calamagrostis < Betula < Rubus. After 4 years, overall mass loss in the climate-treatment plots was 10 % higher compared to the ambient incubation environment. Litter chemistry showed within each incubation environment only a few and species-specific responses. Compared to the interspecific differences, they resulted in only moderate climate treatment effects on mass loss and these differed among seasons and species. Neither N nor P mineralization in the litter were affected by the incubation environment. Remarkably, for all species, no net N mineralization had occurred in any of the treatments during 4 years. Species differed in P-release patterns, and summer warming strongly stimulated P release for all species. Thus, moderate changes in summer temperatures and/or winter snow addition have limited effects on litter decomposition rates and N dynamics, but summer warming does stimulate litter P release. As a result, N-limitation of plant growth in this sub-arctic bog may be sustained or even further promoted.  相似文献   

18.
《农业工程》2014,34(2):110-115
In most terrestrial ecosystems, the majority of aboveground net primary productivity enters the decomposition system as plant litter. The decomposition of plant litter plays a critical role in regulating build up of the forest soil organic matter, releasing of nutrients for plant growth, and influencing the carbon cycling. Soil fauna are considered to be an important factor in the acceleration litter decomposition and nutrient transformations. Mechanisms of soil faunal contribution to litter decomposition include digestion of substrates, increase of surface area through fragmentation and acceleration of microbial inoculation into litter. The Pinus koraiensis mixed broad-leaved forest is one of the typical forest vegetation types in Changbai Mountain. Previously, major studies carried here were focused on climate, soil and vegetation; however, on litter decomposition and the role of soil fauna in this forest ecosystem were limited. In this paper, we conducted a litter decomposition experiment using litterbag method to explore the contribution of soil fauna on litter decomposition and provide a scientific basis for maintaining a balanced in P. koraiensis mixed broad-leaved forest in Changbai Mountains. During 2009 and 2010, we used litterbags with different mesh sizes to examine the decomposition of two dominant tree species (P. koraiensis, Fraxinus mandshurica) in studied site. The results showed that the process of litter decomposition can be separated into two apparent stages. The initial decomposition process at former six months was slow, while accelerated the final six months. The former six months (from October 2009 to April 2010) was winter and spring. There was low temperature and almost no activity of soil fauna and microbes. The final six months (from June to October 2010), decomposition rates increased. In summer and autumn, both temperature and moisture increases, abundance of soil fauna was much than before and was most active. The remaining mass of P. koraiensis was higher than that of F. mandshurica in two mesh size litterbags after 1 year decomposition, meanwhile litter in 2 mm mesh size litterbag had higher decomposition rate than that of 0.01 mm for two species litter. The Collembola, Acari, Enchytraeidae Lithobiomorpha and Diptera larvae were mainly fauna groups in the litterbags. The composition of soil fauna community was difference between P. koraiensis and F. mandshurica during litter decomposition. 24 different soil fauna groups and 1431 individual were obtained in P. koraiensis litterbags; Isotomidae, Tomoceridae and Oribatida were dominant groups; while 31 different soil fauna groups and 1255 individual were obtained in F. mandshurica litterbags; Isotomidae, Hypogastruridae Oribatida and Mesostigmata were dominant groups. The rate of litter decomposition was positively correlated with the individual and group density of soil fauna. Contribution rate to litter decomposition was 1.70% for P. koraiensis and 4.83% for F. mandshurica. Repeated measures ANOVA showed that litter species, time and soil fauna had a significant impact on the rate of litter decomposition (P < 0.05). Our results suggested that soil fauna could accelerate litter decomposition and, consequently, nutrient cycling in P. koraiensis mixed broad-leaved forest, Changbai Mountains.  相似文献   

19.
The microbial decomposition respiration of plant litter generates a major CO2 efflux from terrestrial ecosystems that plays a critical role in the regulation of carbon cycling on regional and global scales. However, the respiration from root litter decomposition and its sensitivity to temperature changes are unclear in current models of carbon turnover in forest soils. Thus, we examined seasonal changes in the temperature sensitivity and decomposition rates of fine root litter of two diameter classes (0–0.5 and 0.5–2.0 mm) of Quercus serrata and Ilex pedunculosa in a deciduous broad-leaved forest. During the study period, fine root litter of both diameter classes and species decreased approximately exponentially over time. The Q10 values of microbial respiration rates of root litter for the two classes were 1.59–3.31 and 1.28–6.27 for Q. serrata and 1.36–6.31 and 1.65–5.86 for I. pedunculosa. A significant difference in Q10 was observed between the diameter classes, indicating that root diameter represents the initial substrate quality, which may determine the magnitude of Q10 value of microbial respiration. Changes in these Q10 values were related to seasonal soil temperature patterns; the values were higher in winter than in summer. Moreover, seasonal variations in Q10 were larger during the 2-year decomposition period than the 1-year period. These results showed that the Q10 values of fine root litter of 0–0.5 and 0.5–2.0 mm have been shown to increase with lower temperatures and with the higher recalcitrance pool of the decomposed substrate during 2 years of decomposition. Thus, the temperature sensitivity of microbial respiration in root litter showed distinct patterns according to the decay period and season because of the temperature acclimation and adaptation of the microbial decomposer communities in root litter.  相似文献   

20.
Earth system models associate the ongoing global warming with increasing frequency and intensity of extreme events such as droughts and heat waves. The carbon balance of soils may be more sensitive to the impact of such extremes than to homogeneously distributed changes in soil temperature (Ts) or soil water content (θs). One parameter influenced by more pronounced drying/rewetting cycles or increases in Ts is the wettability of soils. Results from laboratory and field studies showed that low θs, particularly in combination with high Ts can increase soil water repellency (SWR). Recent studies have provided evidence that the stability of soil organic matter (SOM) against microbial decomposition is substantially enhanced in water repellent soils. This review hypothesizes that SWR is an important SOM stabilization mechanism that could become more important because of the increase in extreme events. We discuss wettability‐induced changes in soil moisture distribution and in soil aggregate turnover as the main mechanisms explaining the reduced mineralization of SOM with increasing SWR. The creation of preferential flow paths and subsequent uneven penetration of rainwater may cause a long‐term reduction of soil water availability, affecting both microorganisms and plants. We conclude that climate change‐induced SWR may intensify the effects of climatic drought and thus affects ecosystem processes such as SOM decomposition and plant productivity, as well as changes in vegetation and microbial community structure. Future research on biosphere–climate interactions should consider the effects of increasing SWR on soil moisture and subsequently on both microbial activity and plant productivity, which ultimately determine the overall carbon balance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号