首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
  国内免费   4篇
  2022年   1篇
  2019年   3篇
  2014年   1篇
  2012年   1篇
  2009年   1篇
排序方式: 共有7条查询结果,搜索用时 31 毫秒
1
1.
为了研究人工湿地处理中碳/氮水平的废水时植物种类及多样性对系统甲烷释放及功能基因丰度的影响,我们构建了实验尺度的人工湿地微宇宙实验系统。选取千屈菜(Lythrum salicaria L.)和海寿花(Pontederia cordata L.)2种人工湿地常用、景观效果好的植物,在系统中配置了单种处理和两物种混种处理。结果表明:千屈菜与海寿花混种系统的甲烷释放强度(8.78 mg CH_4 m~(-2) d~(-1))高于两物种单种系统的平均值(6.97 mg CH_4 m~(-2) d~(-1))(P0.001),同甲烷释放一样,混种系统的mcrA基因绝对丰度(977541.6 copies/g dw soil)也高于两物种单种系统的平均值(585146.8 copies/g dw soil),但混种系统的pmoA基因绝对丰度(326956.6 copies/g dw soil)低于两物种单种系统的平均值(1043616.0 copies/g dw soil)(P0.001)。此外,混种系统的微生物量、植物生物量高于两物种单种系统的平均值(P0.01),但出水铵态氮浓度低于两物种单种系统的平均值(P0.05),出水总有机碳浓度和硝态氮浓度在单混种系统间无显著差异(P0.05)。千屈菜单种系统和海寿花单种系统间的甲烷释放强度、pmoA基因绝对丰度、微生物量、植物生物量和出水铵态氮浓度存在显著差异(P0.05),但mcrA基因绝对丰度、出水总有机碳和硝态氮浓度无显著差异(P0.05)。为了达到人工湿地的高净化效率,需要将千屈菜与海寿花混合种植,但混合种植强化甲烷释放。通过植物种类和丰富度对各指标变异的解释度(ω~2)分析发现,植物种类对甲烷释放、pmoA基因绝对丰度、出水铵态氮的影响大于植物丰富度,但对mcrA基因绝对丰度的影响小于植物丰富度。  相似文献   
2.
香根草栽培平菇的研究   总被引:1,自引:0,他引:1  
本文以香根草为主要配方材料,以常规木屑为对照,设计了12个配方,栽培平菇,通过菌丝的长势和生长速度的不同,筛选适宜平菇生长的配方.研究结果表明,最适配方为香根草48%,类芦20%,芒萁10%,麸皮20%,碳酸钙1%和石灰1%;该配方菌丝长势旺盛、生长速度快,利用该配方栽培平菇,其生物转化率达到102.7%.  相似文献   
3.
为了解人工湿地处理中碳/氮水平的废水时植物种类及多样性对系统氧化亚氮释放及功能基因丰度的影响,本研究构建了实验尺度的垂直流人工湿地微宇宙实验系统.选取芦苇(Phragmites australis)、千屈菜(Lythrum salicaria)和海寿花(Pontederia cordata)3种人工湿地常用、景观效果好的植物,在系统中配置了3个单种处理和1个三物种混种处理.结果表明:芦苇、千屈菜与海寿花混种系统的氧化亚氮释放强度(24597.0 μg N2O·m-2·d^-1)高于三物种单种系统的平均值(11744.8 μg N2O·m^-2·d^-1)(P<0.001),同氧化亚氮释放一样,混种系统的amoA基因绝对丰度(6.33× 10^7 copies·g^-1 soil)和nirS基因绝对丰度(1.92× 106 copies·g^-1 soil)也高于三物种单种系统的平均值(5.70×10^7和1.58×10^6 copies·g^-1 soil).此外,混种系统的出水硝态氮浓度低于三物种单种系统的平均值(P<0.05),但出水硝态氮浓度、微生物量和植物生物量在单混种系统间无显著差异(P>0.05).3个单种系统间的氧化亚氮释放强度、amoA基因绝对丰度、nirS基因绝对丰度、出水铵态氮浓度、微生物量和植物生物量存在显著差异(P<0.01),但出水硝态氮无显著差异(P>0.05).通过植物种类和丰富度对各指标变异的解释度发现,植物种类和丰富度分别解释变异的比率存在一定差异,总体上,植物丰富度对氧化亚氮释放、amoA基因绝对丰度和nirS基因绝对丰度的影响大于植物种类,植物种类对出水硝态氮浓度的影响大于植物丰富度.  相似文献   
4.
研究种植于荒坡地、不同生长年限(1、2、3、5a)的巨菌草对土壤微生物群落功能多样性及肥力的影响。结果表明,不同生长年限巨菌草土壤微生物对不同碳源的利用随培养时间延长而增大,培养72—96 h变化最明显,培养144 h后各土壤AWCD值均达到最大值。总体上AWCD值大小依次为:2年生3年生1年生5年生CK,不同生长年限的巨菌草土壤AWCD值均比对照高,且差异显著,2年生AWCD值最高,其次为3年生,1年生、5年生巨菌草土壤AWCD值差异不显著。对培养96 h土壤微生物利用碳源特性进行主成分分析,31个碳源中提取的与土壤微生物碳源利用相关的主成分8个,其中主成分1至主成分8分别能够解释变量方差的25.39%、18.89%、11.28%、9.31%、6.84%、5.60%、5.26%、4.71%,合计解释变量方差的87.27%;主成分1、主成分2能够区分不同生长年限巨菌草土壤的微生物群落特征,2年生、3年生巨菌草土壤微生物功能多样性与CK相比,差异显著;与主成分1显著相关的碳源主要是糖类,氨基酸,羧酸和多聚物,与主成分2显著相关的碳源主要是氨基酸。不同生长年限的巨菌草的Shannon(H)、均匀度、Brillouin指数均高于CK,且差异显著,2年生与3年生差异不显著,1年生与5年生差异不显著。总体上不同生长年限巨菌草的土壤的pH值、有机质、碱解氮、有效磷、速效钾的含量比对照高,其中3年生巨菌草的土壤有机质含量比对照高98.20%,5年生巨菌草土壤的碱解氮含量比对照高93.2%;除1年生巨菌草外,有机质、碱解氮含量均与对照差异显著。在荒坡地种植巨菌草,可增加土壤微生物群落功能多样性,在一定程度上提高土壤肥力,荒坡地种植巨菌草能产生一定的生态正效应。  相似文献   
5.
不同种植年限的巨菌草对植物和昆虫多样性的影响   总被引:3,自引:0,他引:3  
以未种植巨菌草的荒山坡地为对照(CK),研究种植年限为1、2、3年的巨菌草群落的植物和昆虫多样性.结果表明:种植巨菌草的植物群落物种丰富度比CK低,但盖度比CK高,种植3年的盖度最高为91.6%,比CK高75.8%;种植3、2、1年的巨菌草群落昆虫物种丰富度分别为CK的5.6、5.3和3.6倍;不同种植年限巨菌草群落植物和昆虫的Simpson、Shannon、均匀度、Brillouin、McIntosh等指数均显著高于CK,说明种植巨菌草可明显影响群落的植物和昆虫多样性;群落的植物和昆虫多样性随种植年限的增长逐渐趋于稳定.  相似文献   
6.
该文以速生白榆半木质化枝条为外植体,使用75%的酒精和0.1%HgCl_2消毒处理,外植体经过启动培养后,在增殖培养基中进行丛生芽诱导,将丛生芽切成单株进行生根诱导,最终建立起成熟的速生白榆组培快繁体系。结果表明:外植体最佳消毒处理组合为75%的酒精处理50 s+0.1%HgCl_2处理8 min,外植体污染率为17.3%,成活率为78%;将消毒处理过的外植体接种到启动培养基中,培养25 d,最终筛选出最适白榆外植体启动的培养基为MS+1.0 mg·L~(-1)6-BA+0.1 mg·L~(-1)IBA+30 g·L~(-1)蔗糖+6.5 g·L~(-1)琼脂,启动率高达87.5%;将经过启动培养后的外植体腋芽切下,接种到增殖培养基中进行丛生芽诱导,最终筛选出最佳增殖培养基为MS+0.5 mg·L~(-1)6-BA+0.1 mg·L~(-1)KT+0.1 mg·L~(-1)IBA+30 g·L~(-1)蔗糖+6.5 g·L~(-1)琼脂,继代周期25 d,增殖系数达6.2;将丛生芽切成单株,接种到生根诱导培养基中,筛选出最佳生根培养基为1/2 MS+0.1 mg·L~(-1)IBA+0.1 mg·L~(-1)IAA+30 g·L~(-1)蔗糖+6.5 g·L~(-1)琼脂,生根诱导30 d,生根率达97%。将生根苗在室外炼苗后,移栽到珍珠岩∶蛭石∶泥炭土体积比为1∶1∶1的混合基质中,成活率在90%以上。较高的增殖系数、生根率和移栽成活率可以降低生产成本,进而实现工厂化育苗。  相似文献   
7.
为探明盐碱胁迫对巨菌草根际土壤微生物多样性及酶活性的影响,该文设置了7个盐碱梯度,利用SPSS和Illumina高通量测序分析巨菌草根际土壤生理指标和微生物多样性.结果表明:(1)各处理间,巨菌草根际土壤真菌和细菌结构均存在差异;12‰盐碱浓度下,真菌优势菌纲为粪壳菌纲(68.5%)、散囊菌纲(16.3%),细菌优势菌...  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号