首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
  国内免费   6篇
  2021年   1篇
  2020年   1篇
  2018年   4篇
  2017年   2篇
排序方式: 共有8条查询结果,搜索用时 15 毫秒
1
1.
以‘嘎啦/八棱海棠’为试材,借助15N同位素示踪技术,研究了撒施(T1)、滴灌施氮(T2)和渗灌施氮(T3)对嘎啦苹果氮素吸收利用、分配特性和产量品质的影响,以期进一步完善苹果园水肥一体化技术,挖掘提高氮素利用率的途径。结果表明: T3处理苹果叶片的叶面积、叶绿素和氮含量显著高于T1和T2处理。各时期土壤矿化氮(Nmin)含量在20~40 cm土层表现为T3>T2>T1处理,在0~20 cm土层表现为T2>T3>T1处理。同一器官的Ndff值(树体各器官从肥料中吸收到的15N占该器官全氮量的比例)在各时期均以T3处理最高,T2其次,T1处理最低。果实成熟期的树体15N利用率表现为T3>T2>T1处理,其中T3处理的树体15N利用率为24.2%,分别是T2和T1处理的1.19和1.65倍。果实成熟期T1处理的15N分配率在营养器官最高,T2处理在贮藏器官最高,T3处理在生殖器官最高。各处理的单果重、产量、可溶性固形物、硬度、可溶性糖及糖酸比均以T3处理最高,T2其次,T1处理最低。渗灌施氮处理显著促进了嘎啦苹果树体叶片生长和氮素利用,并提高了果实产量和品质。  相似文献   
2.
为解决木本切花植物帝萝花‘璀璨明珠’繁殖效率低的问题,该文以帝萝花‘璀璨明珠’的幼嫩枝芽为外植体,研究了不同基本培养基对其长势的影响、不同激素种类和浓度对其增殖和生根的效果,分析了其离体繁殖的生长特点,并建立了高效的帝萝花‘璀璨明珠’组培快繁技术体系。结果表明:帝萝花‘璀璨明珠’幼嫩枝芽的消毒方法为0.1%的升汞溶液浸泡12 min,污染率为21.5%;外植体在WPM+ZT 1 mg·L~(-1)+NAA 0.1 mg·L~(-1)培养基上,侧芽萌发率为73%;增殖的最佳培养基为MS+BA 0.4 mg·L~(-1)+NAA 0.05 mg·L~(-1),增殖系数为6.63,增殖方式为侧芽增殖和植株基部丛生芽增殖;生根的适宜培养基为MS+IBA 0.75mg·L~(-1)+NAA 1 mg·L~(-1),生根率为70%;生根瓶苗移栽于珍珠岩和细草炭(体积比为0.5∶1)的基质中,光照强度为10 000~12 000 lx,空气湿度为70%~80%下培养,60 d后成活率可达72%。该研究结果为帝萝花组培种苗的商业化生产提供了技术支撑,同时促进了该高档木本切花的推广和种植及产业化。  相似文献   
3.
研究平邑甜茶幼苗NO3--N吸收和利用特性对不同供钾水平的响应,旨在明确钾肥对氮肥吸收利用的影响,从而为果园科学施肥提供理论依据.以平邑甜茶幼苗为材料进行砂培试验,设置K0、K1、K2、K3、K4、K5、K6 7个钾浓度处理,分别相当于0、2、4、6、8、10、12 mmol·L-1 K+,运用15N同位素示踪技术和非损伤扫描离子选择电极技术,测定了不同供钾水平下平邑甜茶的氮素吸收和利用情况.结果表明: K3处理平邑甜茶幼苗根系活力、硝酸还原酶活性以及根系形态指标均显著高于其他处理.与其他处理相比,K3处理根、茎、叶从肥料中吸收分配到的15N 量对该器官全氮量的贡献率(Ndff)均达到最高,分别为K0处理的1.36、1.33和1.47倍.随供钾水平的增加,植株氮素利用率呈现先增高后降低的趋势,且在K3处理时最大,为23.3%,是K0处理的3.04倍.非损伤微测技术结果显示,K3处理时,平邑甜茶根系对NO3-有强烈吸收且内流速度达到最大,为19.34 pmol·cm-2·s-1;在缺钾(K0)和高钾(K6)处理时有明显外排趋势.因此,钾的亏缺或过量均抑制氮素的吸收和利用,适当供钾能够促进幼苗根系生长,增强硝酸还原酶活性,从而促进平邑甜茶对氮素的吸收.  相似文献   
4.
以6年生‘王林’/SH6/八棱海棠为试验材料,采用15N同位素示踪技术,研究了普通尿素(CU)、袋控缓释肥(BCRF)和控释氮肥(CRNF)对15N-尿素吸收、利用、损失和0~80 cm土层氮素累积动态的影响.结果表明: CRNF和BCRF处理较CU处理均明显提高了苹果生长后期土壤无机氮含量、果实成熟期叶片的SPAD值、氮含量、净光合速率和植株各器官对氮的吸收能力(Ndff值),但CRNF影响更显著.在0~40 cm土层不同物候期15N残留量呈降低趋势,均以CRNR最高,BCRF次之,CU最低,且CRNF降幅平缓,15N残留量主要集中在0~40 cm土层;在40~80 cm 土层不同物候期15N残留量呈增加趋势,均以CU最高,BCRF次之,CRNF最低,且CRNF增幅平缓.在果实成熟期,CRNF的15N肥料利用率为32.6%,分别是BCRF和CU 的1.11、1.56倍,而15N损失率为21.6%,显著低于BCRF(35.6%)和CU(59.6%).CRNF显著提高了果实产量,改善了果实品质,增加了经济效益.  相似文献   
5.
富士苹果萌芽至新梢旺长期肥料氮去向和土壤氮库盈亏   总被引:3,自引:0,他引:3  
运用15N同位素示踪技术,以5年生‘烟富3’/SH6/平邑甜茶苹果为试材,研究了萌芽至新梢旺长期不同施氮水平(0、50、100、150、200、250 kg·hm-2)下肥料氮的吸收利用、土壤残留和土壤氮库盈亏特点.结果表明:早春施氮后,15N均优先分配到根系中,然后转运用于地上部新生器官(果实、新生枝叶)的形态建造.新梢旺长期结束后(施氮2个月后),5.9%~9.9%的肥料氮被树体吸收,29.8%~33.4%的肥料氮残留在0~60 cm土体中,56.7%~64.4%的肥料氮通过其他途径损失.随施氮水平的提高,树体吸收的肥料氮量和土壤残留氮量逐渐增加,但肥料氮利用率和土壤残留率却不断降低,同时损失量和损失率不断增加.随施氮水平的提高,土壤氮素总平衡由亏缺转为盈余,且盈余量随施氮水平的提高而显著提高.表明施氮不足将会造成土壤氮肥力的下降;而过量施氮则会加剧土壤氮素累积,增加氮素污染风险.施氮水平与土壤氮素总平衡呈显著线性相关关系,拟合方程为:y=0.3511x-20.808(R^2=0.9927),当施氮量为59.27 kg·hm-2时,由萌芽至新梢旺长期的土壤氮库达到平衡.  相似文献   
6.
田歌  王芬  彭玲  何流  姜远茂  葛顺峰 《生态学杂志》2017,28(7):2254-2260
研究平邑甜茶幼苗NO3--N吸收和利用特性对不同供钾水平的响应,旨在明确钾肥对氮肥吸收利用的影响,从而为果园科学施肥提供理论依据.以平邑甜茶幼苗为材料进行砂培试验,设置K0、K1、K2、K3、K4、K5、K6 7个钾浓度处理,分别相当于0、2、4、6、8、10、12 mmol·L-1 K+,运用15N同位素示踪技术和非损伤扫描离子选择电极技术,测定了不同供钾水平下平邑甜茶的氮素吸收和利用情况.结果表明: K3处理平邑甜茶幼苗根系活力、硝酸还原酶活性以及根系形态指标均显著高于其他处理.与其他处理相比,K3处理根、茎、叶从肥料中吸收分配到的15N 量对该器官全氮量的贡献率(Ndff)均达到最高,分别为K0处理的1.36、1.33和1.47倍.随供钾水平的增加,植株氮素利用率呈现先增高后降低的趋势,且在K3处理时最大,为23.3%,是K0处理的3.04倍.非损伤微测技术结果显示,K3处理时,平邑甜茶根系对NO3-有强烈吸收且内流速度达到最大,为19.34 pmol·cm-2·s-1;在缺钾(K0)和高钾(K6)处理时有明显外排趋势.因此,钾的亏缺或过量均抑制氮素的吸收和利用,适当供钾能够促进幼苗根系生长,增强硝酸还原酶活性,从而促进平邑甜茶对氮素的吸收.  相似文献   
7.
富士苹果幼树生长与氮素积累和利用动态   总被引:1,自引:0,他引:1  
以6年生烟富3/SH6/平邑甜茶为试材,用整株破坏性解析的方法,研究了萌芽期至果实成熟期7个时期下的树体生长和氮素积累动态,并借助15N同位素示踪技术研究了树体对肥料氮的吸收利用和分配特性,以期阐明苹果树的氮积累动态和肥料氮的最大效率期,从而为科学施氮提供理论依据.结果表明: 萌芽期(3月25日)至果实成熟期(萌芽后210 d)红富士苹果幼树整株干物质净积累量为4.51 kg,其中果实占66.5%,叶梢(叶片与新梢,下同)占20.2%,多年生器官占13.3%;叶梢干物质积累量在萌芽后30~60 d增长幅度较大,占其整个处理时期的42.9%;果实干物质积累量在萌芽后120~180 d增长幅度大,占整个处理时期的70%.整株氮素净积累量为29.1 g,在萌芽后30~60 d和120~180 d增长较快,分别为7.2和12.8 g,占整个处理时期的24.7%和44%;叶梢在萌芽后0~60 d氮积累速率较快,占其整个时期的69.1%;果实的氮积累量在萌芽后120~180 d最快,占其整个时期的60.8%;多年生器官的氮积累量在处理周期内呈先下降后上升的趋势,并在萌芽后 60 d到达最低水平.树体在不同时期的15N利用率差异显著,分别在萌芽后30~60、120~150和150~180 d处于较高水平,15N利用率分别为2.3%、4.1%和4.0%;多年生器官在各个时期的15N分配率均呈现较高水平,新生器官的15N分配率均为先上升后下降的趋势,其中叶片新梢在萌芽后30~60 d达到最高水平,为38.4%;果实在萌芽后120~150 d和150~180 d到达最高水平,分别为15.0%和16.6%.因此,叶片和新梢氮素积累的关键时期为萌芽后30~60 d;果实氮素积累的关键时期为萌芽后120~180 d;树体对肥料氮的最大效率期为萌芽后30~60 d和120~180 d.  相似文献   
8.
以6年生‘王林’/SH6/八棱海棠为试验材料,采用15N同位素示踪技术,研究了普通尿素(CU)、袋控缓释肥(BCRF)和控释氮肥(CRNF)对15N-尿素吸收、利用、损失和0~80 cm土层氮素累积动态的影响.结果表明: CRNF和BCRF处理较CU处理均明显提高了苹果生长后期土壤无机氮含量、果实成熟期叶片的SPAD值、氮含量、净光合速率和植株各器官对氮的吸收能力(Ndff值),但CRNF影响更显著.在0~40 cm土层不同物候期15N残留量呈降低趋势,均以CRNR最高,BCRF次之,CU最低,且CRNF降幅平缓,15N残留量主要集中在0~40 cm土层;在40~80 cm 土层不同物候期15N残留量呈增加趋势,均以CU最高,BCRF次之,CRNF最低,且CRNF增幅平缓.在果实成熟期,CRNF的15N肥料利用率为32.6%,分别是BCRF和CU 的1.11、1.56倍,而15N损失率为21.6%,显著低于BCRF(35.6%)和CU(59.6%).CRNF显著提高了果实产量,改善了果实品质,增加了经济效益.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号