首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   0篇
  1964年   2篇
  1963年   4篇
  1962年   1篇
排序方式: 共有7条查询结果,搜索用时 93 毫秒
1
1.
(一)在648mμ及720mμ的单色光下,比较了栅列藻的光合作用及光还原作用的相对活力,结果发现,在648mμ光下,光合作用及光还原作用的相对活力相同,在720mμ光下则光还原作用的相对活力较高。(二)测定栅列藻在648mμ及720mμ的单色光下光还原作用的光强曲线。观察到在720mμ光下光还原活力可以达到饱和,而尚未产生“去适应”,在648mμ光下光还原活力在低于720mμ的活力时就发生“去适应”,回复到光合作用。(三)试验结果有力地支持了光合作用有两个光化学过程的看法,其一需较短波光,与放氧有关。  相似文献   
2.
1958年,Arnon首先发现在辅酶Ⅱ的光还原过程中,同时有ATP的形成,即所谓偶联光合磷酸化或非循环光合磷酸化。随后又肯定了K_3Fe(CN)_6及苯醌作为希尔氧化剂时的偶联磷酸化。在常用的希尔氧化剂中,DCPIP却是一个例外。大家知道,  相似文献   
3.
利用菠菜叶绿体为材料,比较了K_3Fe(CN)_6和DOPIP+K_3Fe(CN)_6系统在620—705mμ光谱区段中的作用光谱。发现两者是完全一致的,在620—685mμ区段中量子效率相仿,当波长大于685mμ后则效率显著下降。同时还测定了不包括放氧步骤的NADP+DCPIPH_2+维生素C及NADP+DCPIPH_2+维生素C+CMU两系统的作用光谱,它们在620—685mμ范围内的相对量子效率与K_3Fe(CN)_6系统相仿,但对705mμ光的利用效率相对地要比K_3Fe(CN)_6系统高一些。在620—685mμ范围内,所有各系统的作用光谱中,均未见到Arnon所报告的显著的峰和谷,从而认为Arnon根据他所作的各系统的作用光谱的形状而作出的一些推论是有问题的。  相似文献   
4.
循环PSP在活体中的存在与作用,是光合作用研究中受到普遍关心而尚未阐明的问题之一。一部分人把循环PSP提高到非常重要的地位,认为它是光合作用中最基本的过程,又是所有行光合作用有机体的共同特征。而另一部分人则连循环PSP在活体中的存在都表示怀疑。究其原因,主要是由  相似文献   
5.
(1)在不同光强度下研究叶綠体的光合磷酸化作用和希尔反应,发现当光弱到一定程度后,光合磷酸化的效率,不论是“循环”或是“偶联”的都显著降低,而同时测定的希尔反应的效率则不变。因此,这个“光强效应”为光合磷酸化所特有,显然不是发生在“电子传递系统”或氧化还原部分。(2)在作用液中加入非放射性的ATP或预先照光形成一些AT~32P,再进行实验,这个“光强效应”仍同样出现,证明这个效应不是由于最终产物(ATP)的分解,亦不是由于应用放射性~(32)P测定方法所造成的假象。(3)这个“光强效应”在光强增加到一定程度以上时,即逐渐消失;在较低的温度下则减轻;在闪光条件下则比在连续光下更加显著。这些结果指出,“光强效应”是由于中间产物的破坏或转向其他代谢途径。此作用是一个暗反应,可能是酶促的。酶量少,容易达到饱和,弱光下中间产物少,被它作用的比重就大,强光下中间产物多,被它作用的比重就小,所以“光强效应”只在弱光下显著。(4) 叶綠体加Mg~( )及PMS照以饱和强光,然后立即(<0.1秒)在暗中加入Pi及ADP,仍有很多ATP形成,但如在暗中过5秒钟后再加Pi及ADP,则几乎完全没有ATP形成。这指出叶綠体照光后产生能与Pi结合的中间产物(Z~*),其饱和量约为20—40mμmole/μmole叶綠素。它在室温(20—25度)迅速破坏或转向其他代谢途径,5秒后已不存在,在低温(5度)则可维持数秒。(5) 同样制剂加Pi再照光,然后暗5秒再加ADP,则ATP的产量,比立即加ADP者只减少一半。指出上述的中间产物(Z~*)与Pi结合后形成第二个中间产物(Z~P)在叶綠体内比较稳定。“光强效应”可能主要是Z~*或以前的中间产物被破坏或转向其他用途所引起。  相似文献   
6.
(1)黄化小麦幼苗初变绿时,光合磷酸化活力之发生远较叶绿素的生成为迟。在实验条件下,照光变绿3小时后,才可测得光合磷酸化活力,且其按叶绿素为基础计算的活力随照光变绿时间的增加而增加,至照光变绿7—8小时后,叶绿体上叶绿素含量尚在继续增加,但光合磷酸化活力则趋向恒定。(2)在黄化幼苗变绿初期,测得的循环光合磷酸化ATP形成能力较非循环光合磷酸化ATP形成能力高得多,以后较接近;但将循环光合磷酸化之ATP形成能力与非循环光合磷酸化之放氧能力相比较,则其比例在不同时期相差不大。这说明,在变绿初期非循环光合磷酸化之ATP形成能力特别小的原因,主要是由于当时它的偶联程度特别低,并不是因为它较循环光合磷酸化多牵涉到放氧等步骤,而这些步骤可能发生得较晚所致。以DCPIPH_2作氢供体的氧化光合磷酸化活力的最初增长情况与以Fe(CN)_6~≡作氢受体的非循环光合磷酸化ATP形成能力的增长情况一样,均比以PMS促进的循环光合磷酸化活力增长时间为晚,这结果也有助于证明非循环光合磷酸化ATP形成能力增长较晚的原因与它牵涉到放氧步骤无关。(3)使黄化变绿幼苗光合磷酸化、希尔反应活力达到饱和所需的光强度与绿苗所需的相仿。变绿初期的叶绿体,其光合磷酸化作用有很强的“光强效应”,卽弱光下电子传递速度慢、PSP活力低时,与磷酸化的偶联程度会急剧下降。这现象可能是造成变绿初期测得的非循环光合磷酸化ATP形成能力特别低的原因。(4)黄化幼苗变绿时,同化CO_2能力之发生时间与光合磷酸化活力之发生时间差别不大,但以叶绿素为基础计算,前者的活力较早达到恒定。  相似文献   
7.
在地球上,几乎一切生物的生存和繁荣都直接或間接地依靠着植物的光合作用来供給它們能量和有机物质。早在十九世紀中叶,人們就已知道光合作用的总方程式为: CO_2+H_2O(?)(CH_2O)~*+O_2 (1) 但是,对于它的詳細机制却至今还不曾全部明了,仍然是生物科学中大家非常关心的重要研究对象。最初,人們对光合作用机制的設想比較簡单,主要是凭着臆测。巴耶尔(Baeyer)于1870年提出的甲醛假說和威尔什塔特尔(Willstatter)等在1918年对这假說的修改,都是把CO_2还原与光化学反应直接联系在一起,并且认为O_2是从CO_2中释放出来的。虽然这些假說  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号