首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11219篇
  免费   1315篇
  国内免费   4562篇
  2024年   47篇
  2023年   282篇
  2022年   441篇
  2021年   656篇
  2020年   545篇
  2019年   624篇
  2018年   449篇
  2017年   442篇
  2016年   457篇
  2015年   695篇
  2014年   929篇
  2013年   851篇
  2012年   1222篇
  2011年   1062篇
  2010年   810篇
  2009年   818篇
  2008年   966篇
  2007年   918篇
  2006年   790篇
  2005年   710篇
  2004年   540篇
  2003年   514篇
  2002年   476篇
  2001年   336篇
  2000年   362篇
  1999年   209篇
  1998年   143篇
  1997年   90篇
  1996年   90篇
  1995年   93篇
  1994年   67篇
  1993年   45篇
  1992年   55篇
  1991年   39篇
  1990年   42篇
  1989年   44篇
  1988年   36篇
  1987年   18篇
  1986年   17篇
  1985年   22篇
  1984年   18篇
  1983年   15篇
  1982年   20篇
  1981年   10篇
  1978年   4篇
  1976年   8篇
  1968年   5篇
  1964年   6篇
  1957年   8篇
  1950年   5篇
排序方式: 共有10000条查询结果,搜索用时 109 毫秒
1.
目的 研究严重急性呼吸综合征冠状病毒2(SARS-CoV-2)膜蛋白对宿主细胞mRNA前体(pre-mRNA)3"非翻译区(UTR)加工的影响。方法 本研究以人肺上皮细胞系A549为模型,利用瞬时转染在细胞内过表达SARS-CoV-2膜蛋白;利用RNA-Seq测序技术及生物信息学分析方法,系统性描绘宿主细胞选择性多聚腺苷酸化(alternative polyadenylation,APA)事件;Metascape数据库对发生显著APA变化的基因进行功能富集分析;RT-qPCR验证靶基因3"UTR长度变化;蛋白质免疫印迹(Western blot)检测目的蛋白表达水平。结果 SARS-CoV-2膜蛋白外源表达后宿主细胞内共813个基因发生显著APA变化。GO和KEGG分析显示,差异APA基因广泛参与有丝分裂细胞周期、调节细胞应激等生物过程,涉及病毒感染和蛋白质加工等。从中进一步筛选出AKT1基因,在IGV软件中显示3"UTR延长;RT-qPCR验证AKT1基因的3"UTR长度变化趋势;Western blot结果显示AKT1蛋白磷酸化水平增加。结论 SARS-CoV-2膜蛋白潜在影响宿主pre-mRNA的3"UTR加工,其中参与多种病毒性生物过程的AKT1基因 3"UTR延长,且其编码的蛋白质功能在细胞内被激活。  相似文献   
2.
Ren  Xinwei  Tang  Jingchun  Wang  Lan  Liu  Qinglong 《Plant and Soil》2021,462(1-2):561-576
Plant and Soil - To investigate the effects of polystyrene microplastics (PS-beads) on the soil properties, photosynthesis of Flowering Chinese cabbage, the rhizosphere microbial community and...  相似文献   
3.
4.
5.
An ecosystem service is a benefit derived by humanity that can be traced back to an ecological process. Although ecosystem services related to surface water have been thoroughly described, the relationship between atmospheric water and ecosystem services has been mostly neglected, and perhaps misunderstood. Recent advances in land-atmosphere modeling have revealed the importance of terrestrial ecosystems for moisture recycling. In this paper, we analyze the extent to which vegetation sustains the supply of atmospheric moisture and precipitation for downwind beneficiaries, globally. We simulate land-surface evaporation with a global hydrology model and track changes to moisture recycling using an atmospheric moisture budget model, and we define vegetation-regulated moisture recycling as the difference in moisture recycling between current vegetation and a hypothetical desert world. Our results show that nearly a fifth of annual average precipitation falling on land is from vegetation-regulated moisture recycling, but the global variability is large, with many places receiving nearly half their precipitation from this ecosystem service. The largest potential impacts for changes to this ecosystem service are land-use changes across temperate regions in North America and Russia. Likewise, in semi-arid regions reliant on rainfed agricultural production, land-use change that even modestly reduces evaporation and subsequent precipitation, could significantly affect human well-being. We also present a regional case study in the Mato Grosso region of Brazil, where we identify the specific moisture recycling ecosystem services associated with the vegetation in Mato Grosso. We find that Mato Grosso vegetation regulates some internal precipitation, with a diffuse region of benefit downwind, primarily to the south and east, including the La Plata River basin and the megacities of Sao Paulo and Rio de Janeiro. We synthesize our global and regional results into a generalized framework for describing moisture recycling as an ecosystem service. We conclude that future work ought to disentangle whether and how this vegetation-regulated moisture recycling interacts with other ecosystem services, so that trade-offs can be assessed in a comprehensive and sustainable manner.  相似文献   
6.
7.
A murine erythroleukemic cell line, 745 A4-TG, deficient in hypoxanthine-guanine-phosphoribosyl transferase, can be induced with 3 mM hexamethylene bisacetamide to yield at least 50% of cells undergoing irreversible erythroid differentiation and finally losing capacity for cell divisions. The effects of such induced differentiation of 745 A4-TG on its ability to form viable and proliferating hybrids when fused with 3T3 1T22 fibroblasts were investigated. We found that when the induced 745 A4-TG cells were used, more continuously proliferating hybrids were obtained than could be accounted for by the residual uninduced cells which remained in these induced preparations. This suggests that some of the induced 745 A4-TG cells, when fused with 3T3 1T22 reverted from the induced phenotype of a limited capacity for cell proliferation to an uninduced state of continuous proliferation. This observation was further confirmed with the use of fully differentiated 745 A4-TG cells, which were obtained after selection with a bromodeoxyuridine suicide treatment to eliminate the uninduced and the partially differentiated cells in the preparations. When these selected, fully differentiated cells, as characterized by their lack of proliferation capacity and thymidine kinase activity, were fused with 3T3 1T22 (also deficient in thymidine kinase), it was found that not only were viable hybrid colonies obtained in a selection medium, which precluded the proliferation of either parental cells, but these hybrids continued to proliferate for more than two months in selection medium. These data thus confirmed that some fully differentiated erythroleukemic nucleus components in the hybrids were reactivated to regain capacity for cell proliferation and to dedifferentiate to synthesize thymidine kinase for survival in the selection medium. The lack of hemoglobin synthesis by these hybrids also indicates dedifferention of these murine erythroleukemic components in the hybrids.  相似文献   
8.
Over the last decades, production of microalgae and cyanobacteria has been developed for several applications, including novel foods, cosmetic ingredients and more recently biofuel. The sustainability of these promising developments can be hindered by some constraints, such as water and nutrient footprints. This review surveys data on N2-fixing cyanobacteria for biomass production and ways to induce and improve the excretion of ammonium within cultures under aerobic conditions. The nitrogenase complex is oxygen sensitive. Nevertheless, nitrogen fixation occurs under oxic conditions due to cyanobacteria-specific characteristics. For instance, in some cyanobacteria, the vegetative cell differentiation in heterocyts provides a well-adapted anaerobic microenvironment for nitrogenase protection. Therefore, cell cultures of oxygenic cyanobacteria have been grown in laboratory and pilot photobioreactors (Dasgupta et al., 2010; Fontes et al., 1987; Moreno et al., 2003; Nayak & Das, 2013). Biomass production under diazotrophic conditions has been shown to be controlled by environmental factors such as light intensity, temperature, aeration rate, and inorganic carbon concentration, also, more specifically, by the concentration of dissolved oxygen in the culture medium. Currently, there is little information regarding the production of extracellular ammonium by heterocytous cyanobacteria. This review compares the available data on maximum ammonium concentrations and analyses the specific rate production in cultures grown as free or immobilized filamentous cyanobacteria. Extracellular production of ammonium could be coupled, as suggested by recent research on non-diazotrophic cyanobacteria, to that of other high value metabolites. There is little information available regarding the possibility for using diazotrophic cyanobacteria as cellular factories may be in regard of the constraints due to nitrogen fixation.  相似文献   
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号