首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   50篇
  免费   3篇
  国内免费   5篇
  2023年   2篇
  2022年   5篇
  2021年   3篇
  2020年   3篇
  2019年   7篇
  2018年   7篇
  2017年   2篇
  2016年   4篇
  2015年   1篇
  2014年   1篇
  2013年   3篇
  2012年   6篇
  2011年   7篇
  2010年   2篇
  2009年   4篇
  2002年   1篇
排序方式: 共有58条查询结果,搜索用时 218 毫秒
1.
Small molecule cholinesterases inhibitor (ChEI) provides an effective therapeutic strategy to treat Alzheimer’s disease (AD). Currently, the discovery of new ChEI with multi-target effect is still of great importance. Herein, we report the synthesis, structure–activity relationship study and biological evaluation of a series of tacrine-cinnamic acid hybrids as new ChEIs. All target compounds are evaluated for their in vitro cholinesterase inhibitory activities. The representatives which show potent activity on cholinesterase, are evaluated for the amyloid β-protein self-aggregation inhibition and in vivo assays. The optimal compound 19, 27, and 30 (human AChE IC50?=?10.2?±?1.2, 16.5?±?1.7, and 15.3?±?1.8?nM, respectively) show good performance in ameliorating the scopolamine-induced cognition impairment and preliminary safety in hepatotoxicity evaluation. These compounds deserve further evaluation for the development of new therapeutic agents against AD.  相似文献   
2.
香果树是中国特有的单种属孑遗树种,探讨末次冰盛期以来香果树在中国的潜在地理分布格局及其变化,对研究茜草科乃至中国亚热带植物区系的系统发育、古生态和古气候变迁等具有重要作用。研究基于最大熵MaxEnt模型与ArcGIS空间分析技术,利用香果树分布点位信息与气候数据,构建其在末次冰盛期(LGM)、全新世中期(MID)、当前(1960—1990年)以及未来(2061—2080年)的潜在地理分布格局,探明其分布格局的变化趋势,揭示引起其潜在地理分布格局改变的关键因子。结果表明,香果树当前适生区总面积约197.575×104 km2,主要位于中国亚热带地区,其中高适生区集中分布于四川盆周山地、武陵山与武夷山地区,最干季度平均温、最湿月降水量、最冷季度降水量是限制其分布的主要气候因子。末次冰盛期时香果树广泛分布于中国亚热带地区,随后适生区开始缩减且向内陆退缩,全新世中期后适生区面积继续缩减并向高纬度地区迁移。随着全球气候变暖,在不同排放情景下香果树适宜生境面积均进一步缩减并向西与高纬度地区迁移。总体而言,从末次冰盛期至未来,香果树适生区呈现持续缩减并向西...  相似文献   
3.
Numerous studies have reported that CXCR4 and CXCR7 play an essential, but differential role in stromal cell-derived factor-1 (SDF-1)-inducing cell chemotaxis, viability and paracrine actions of BMSCs. Adipose tissue-derived mesenchymal stem cells (ADSCs) have been suggested to be potential seed cells for clinical application instead of bone marrow derived stroma cell (BMSCs). However, the function of SDF-1/CXCR4 and SDF-1/CXCR7 in ADSCs is not well understood. This study was designed to analyze the effect of SDF-1/CXCR4 and SDF-1/CXCR7 axis on ADSCs biological behaviors in vitro. Using Flow cytometry and Western blot methods, we found for the first time that CXCR4/CXCR7 expression was increased after treatment with SDF-1 in ADSCs. SDF-1 promoted ADSCs paracrine, proliferation and migration abilities. CXCR4 or CXCR7 antibody suppressed ADSCs paracrine action induced by SDF-1. The migration of ADSCs can be abolished by CXCR4 antibody, while the proliferation of ADSCs was only downregulated by CXCR7 antibody. Our study indicated that the angiogenesis of ADSCs is, at least partly, mediated by SDF-1/CXCR4 and SDF-1/CXCR7 axis. However, only binding of SDF-1/CXCR7 was required for proliferation of ADSCs, and CXCR7 was required for migration of ADSCs induced by SDF-1. Our studies provide evidence that the activation of either axis may be helpful to improve the effectiveness of ADSCs-based stem cell therapy.  相似文献   
4.
5.
Colorectal cancer (CRC) ranks as one of the most commonly diagnosed malignancies worldwide. Although mortality rates have been decreasing, the prognosis of CRC patients is still highly dependent on the individual. Therefore, identifying and understanding novel biomarkers for CRC prognosis remains crucial. The gene expression profiles of five-gene expression omnibus (GEO) data sets of CRC were first downloaded. A total of 352 consistent differentially expressed genes (DEGs) were identified for CRC and paired with normal tissues. Functional analysis including gene ontology and Kyoto encyclopedia of genes and genomes pathway enrichment revealed that these DEGs were related to metabolic pathways, tight junctions, and the cell cycle. Ten hub DEGs were identified based on the search tool for the retrieval of interacting genes database and protein–protein interaction networks. By using univariate Cox proportional hazard regression analysis, we found 11 survival-related genes among these DEGs. We finally established a five-gene signature (kinesin family member 15, N-acetyltransferase 2, glutathione peroxidase 3, secretogranin II, and chloride channel accessory 1) with prognostic value in CRC by step multivariate Cox regression analysis. Based on this risk scoring system, patients in the high-risk group had significantly poorer survival results compared with those in the low-risk group (log-rank test, p < 0.0001). Finally, we validated our gene signature scoring system in two independent GEO cohorts (GSE17536 and GSE33113). We found all five of the signature genes to be DEGs in The Cancer Genome Atlas database. In conclusion, our findings suggest that our five DEG-based signature can provide a novel biomarker with useful applications in CRC prognosis.  相似文献   
6.
Human plasma is dominated by high‐abundance proteins which severely impede the detection of low‐abundance proteins. Unfortunately, now there is no efficient method for large‐scale depletion of high‐abundance proteins in human plasma. In this study, we developed a new strategy, strong anion exchange (SAX)/RP 2D LC system, which has potential for large‐scale depletion of high‐abundance proteins in human plasma. Separation gradients of the system were optimized to ensure an extensive separation of plasma proteins. Plasma was fractionated into 67 fractions by SAX. All these fractions were subjected a thorough separation by the 2D RPLC and 66 peaks with high UV absorption (>20 mAU) at 215 nm were collected. Proteins in these peaks were identified by LC‐MS/MS analysis. Results showed that 83 proteins could be identified in these peaks, 68 among them were reported to be high‐ or middle‐abundance proteins in plasma. All these proteins had definite retention times and were mapped in the 2D SAX‐RP system, which resulted in accurate depletion of high‐abundance proteins with ease. Our studies provide a convenient and effective method for large‐scale depletion of high‐abundance proteins and in‐depth research in human plasma proteomics.  相似文献   
7.
辣木富含多种营养成分,在食品和药物开发方面有巨大的潜在开发价值。本文提供了一种可行的辣木细胞悬浮培养技术。由辣木的根诱导形成愈伤组织和叶诱导形成愈伤组织的合适细胞悬浮培养条件分别为MS培养基(MS)+1.0mg/L 2,4-二氯苯氧乙酸(2,4-D)+1.0mg/L激动素(KT)和MS+0.5mg/L 2,4-D+0.5mg/L KT,摇床转速均为50~100r/min,将愈伤组织添加到液体悬浮培养基中20d左右可得到大量悬浮细胞。本研究为辣木细胞水平的培养和研究提供了一条途径,为辣木潜在价值的开发利用提供新的思路。  相似文献   
8.
AMD3100 is a specific C-X-C chemokine receptor type 4 (CXCR4) antagonist which blocks the interaction between CXCR4 and CXCL12. Multiple lines of evidence suggest that AMD3100 has analgesic effects on many pathological pain states, including peripheral neuropathic pain. However, little is known about the underlying mechanisms. In the current study, we investigated the effect of different doses of AMD3100 on neuropathic pain in rats after L5 spinal nerve ligation. We used naloxone methiodide (NLXM) to further determine whether AMD3100-mediated analgesic effect was opioid-dependent. Behavioral study showed that early repeated administration of AMD3100 (2 and 5 mg/kg, i.p.) dose-dependently alleviates peripheral neuropathic pain. Flow cytometry, immunofluorescence and NLXM experiments showed that AMD3100 alleviates neuropathic pain partially by augmenting leukocyte-derived endogenous opioid secretion. Furthermore, we found that pro-inflammatory cytokines were down-regulated by AMD3100 using Enzyme-linked Immunosorbent Assay. Our data indicate that AMD3100 dose-dependently alleviates neuropathic pain partially by augmenting leukocyte-derived endogenous opioid secretion. This finding suggests that AMD3100 may be a viable pharmacotherapeutic strategy for the treatment of neuropathic pain.  相似文献   
9.
10.
The Roseobacter clade of aerobic marine proteobacteria, which compose 10–25% of the total marine bacterial community, has been reported to fix CO2, although it has not been determined what pathway is involved. In this study, we report the first metabolic studies on carbohydrate utilization, CO2 assimilation, and amino acid biosynthesis in the phototrophic Roseobacter clade bacterium Roseobacter denitrificans OCh114. We develop a new minimal medium containing defined carbon source(s), in which the requirements of yeast extract reported previously for the growth of R. denitrificans can be replaced by vitamin B12 (cyanocobalamin). Tracer experiments were carried out in R. denitrificans grown in a newly developed minimal medium containing isotopically labeled pyruvate, glucose or bicarbonate as a single carbon source or in combination. Through measurements of 13C-isotopomer labeling patterns in protein-derived amino acids, gene expression profiles, and enzymatic activity assays, we report that: (1) R. denitrificans uses the anaplerotic pathways mainly via the malic enzyme to fix 10–15% of protein carbon from CO2; (2) R. denitrificans employs the Entner-Doudoroff (ED) pathway for carbohydrate metabolism and the non-oxidative pentose phosphate pathway for the biosynthesis of histidine, ATP, and coenzymes; (3) the Embden-Meyerhof-Parnas (EMP, glycolysis) pathway is not active and the enzymatic activity of 6-phosphofructokinase (PFK) cannot be detected in R. denitrificans; and (4) isoleucine can be synthesized from both threonine-dependent (20% total flux) and citramalate-dependent (80% total flux) pathways using pyruvate as the sole carbon source.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号