首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3641篇
  免费   168篇
  国内免费   1篇
  2023年   31篇
  2022年   28篇
  2021年   88篇
  2020年   62篇
  2019年   64篇
  2018年   112篇
  2017年   80篇
  2016年   138篇
  2015年   168篇
  2014年   178篇
  2013年   268篇
  2012年   312篇
  2011年   286篇
  2010年   188篇
  2009年   174篇
  2008年   192篇
  2007年   177篇
  2006年   157篇
  2005年   131篇
  2004年   108篇
  2003年   108篇
  2002年   69篇
  2001年   54篇
  2000年   40篇
  1999年   40篇
  1998年   28篇
  1997年   29篇
  1996年   24篇
  1995年   19篇
  1994年   12篇
  1993年   14篇
  1992年   27篇
  1991年   20篇
  1990年   26篇
  1989年   21篇
  1988年   26篇
  1987年   18篇
  1986年   22篇
  1985年   28篇
  1984年   23篇
  1983年   27篇
  1982年   15篇
  1981年   14篇
  1980年   12篇
  1979年   19篇
  1977年   13篇
  1974年   15篇
  1972年   19篇
  1971年   12篇
  1969年   13篇
排序方式: 共有3810条查询结果,搜索用时 51 毫秒
1.
In order to adapt to the fluctuations in soil salinity/osmolarity the bacteria of the genusAzospirillum accumulate compatible solutes such as glutamate, proline, glycine betaine, trehalose, etc. Proline seems to play a major role in osmoadaptation. With increase in osmotic stress the dominant osmolyte inA. brasilense shifts from glutamate to proline. Accumulation of proline inA. brasilense occurs by both uptake and synthesis. At higher osmolarityA. brasilense Sp7 accumulates high intracellular concentration of glycine betaine which is taken up via a high affinity glycine betaine transport system. A salinity stress induced, periplasmically located, glycine betaine binding protein (GBBP) of ca. 32 kDa size is involved in glycine betaine uptake inA. brasilense Sp7. Although a similar protein is also present inA. brasilense Cd it does not help in osmoprotection. It is not known ifA. brasilense Cd can also accumulate glycine betaine under salinity stress and if the GBBP-like protein plays any role in glycine betaine uptake. This strain, under salt stress, seems to have inadequate levels of ATP to support growth and glycine betaine uptake simultaneously. ExceptA. halopraeferens, all other species ofAzospirillum lack the ability to convert choline into glycine betaine. Mobilization of thebet ABT genes ofE. coli intoA. brasilense enables it to use choline for osmoprotection. Recently, aproU-like locus fromA. lipoferum showing physical homology to theproU gene region ofE. coli has been cloned. Replacement of this locus, after inactivation by the insertion of kanamycin resistance gene cassette, inA. lipoferum genome results in the recovery of mutants which fail to use glycine betaine as osmoprotectant.  相似文献   
2.
A. Kumar  S. Sharma  S. Mishra 《Plant biosystems》2016,150(5):1056-1064
This study was conducted to study the long-term impact of bioinoculants, Azotobacter chroococcum and arbuscular mycorrhizal fungi (AMF) on growth and biomass yield of Jatropha curcas grown in nursery and in field conditions. The experiment was set up in a randomized block design, and the following treatments was designed (T1 = control, T2 = Azotobacter, T3 = inoculation with AMF, and T4 = inoculation with Azotobacter + AMF). Data on various growth attributes (shoot height and shoot diameter) and biochemical parameters [leaf relative water content (LRWC), sugars, protein, and photosynthetic pigments] were recorded up to 6 months in the nursery and in the field (18 months). Results pertaining to morpho-physiological traits showed Azotobacter and AMF consortia increase shoot height, shoot diameter, LRWC, sugars, proteins, and photosynthetic pigments over control under nursery conditions. Besides enhancing the plant growth, these bioinoculants helped in better establishment of Jatropha plants under field conditions. A significant improvement in the shoot height, shoot diameter, fruit yield/plant, and seed yield (g)/plant was evident in 18-month-old Jatropha plants under field conditions when Azotobacter and AMF were co-inoculated. This work supports the application of bioinoculants for establishment of Jatropha curcas in semi-arid regions.  相似文献   
3.
4.
Summary The kinetics of thermal deactivation for thermostable DNA polymerase enzymes were investigated by using the experimental data published elsewhere (Nielson et al. 1996. Strategies. 9, 7–8). The order of deactivation (a) and the deactivation rate constants (k d) were determined for different Taq DNA polymerase enzymes and were found to be of first order.  相似文献   
5.
Human immunodeficiency virus type 1 encoded viral protein Vpr is essential for infection of macrophages by HIV-1. Furthermore, these macrophages are resistant to cell death and are viral reservoir. However, the impact of Vpr on the macrophage proteome is yet to be comprehended. The goal of the present study was to use a stable-isotope labeling by amino acids in cell culture (SILAC) coupled with mass spectrometry-based proteomics approach to characterize the Vpr response in macrophages. Cultured human monocytic cells, U937, were differentiated into macrophages and transduced with adenovirus construct harboring the Vpr gene. More than 600 proteins were quantified in SILAC coupled with LC-MS/MS approach, among which 136 were significantly altered upon Vpr overexpression in macrophages. Quantified proteins were selected and clustered by biological functions, pathway and network analysis using Ingenuity computational pathway analysis. The proteomic data illustrating increase in abundance of enzymes in the glycolytic pathway (pentose phosphate and pyruvate metabolism) was further validated by western blot analysis. In addition, the proteomic data demonstrate down regulation of some key mitochondrial enzymes such as glutamate dehydrogenase 2 (GLUD2), adenylate kinase 2 (AK2) and transketolase (TKT). Based on these observations we postulate that HIV-1 hijacks the macrophage glucose metabolism pathway via the Vpr-hypoxia inducible factor 1 alpha (HIF-1 alpha) axis to induce expression of hexokinase (HK), glucose-6-phosphate dehyrogenase (G6PD) and pyruvate kinase muscle type 2 (PKM2) that facilitates viral replication and biogenesis, and long-term survival of macrophages. Furthermore, dysregulation of mitochondrial glutamate metabolism in macrophages can contribute to neurodegeneration via neuroexcitotoxic mechanisms in the context of NeuroAIDS.  相似文献   
6.
Cancer cell motility is a key phenomenon regulating invasion and metastasis. Focal adhesion kinase (FAK) plays a major role in cellular adhesion and metastasis of various cancers. The relationship between dietary supplementation of calcium and colon cancer has been extensively investigated. However, the effect of calcium (Ca2+) supplementation on calpain-FAK-motility is not clearly understood. We sought to identify the mechanism of FAK cleavage through Ca2+ bound lactate (CaLa), its downstream signaling and role in the motility of human colon cancer cells. We found that treating HCT116 and HT-29 cells with CaLa immediately increased the intracellular Ca2+ (iCa2+) levels for a prolonged period of time. Ca2+ influx induced cleavage of FAK into an N-terminal FAK (FERM domain) in a dose-dependent manner. Phosphorylated FAK (p-FAK) was also cleaved in to its p-N-terminal FAK. CaLa increased colon cancer cells motility. Calpeptin, a calpain inhibitor, reversed the effects of CaLa on FAK and pFAK cleavage in both cancer cell lines. The cleaved FAK translocates into the nucleus and modulates p53 stability through MDM2-associated ubiquitination. CaLa-induced Ca2+ influx increased the motility of colon cancer cells was mediated by calpain activity through FAK and pFAK protein destabilization. In conclusion, these results suggest that careful consideration may be given in deciding dietary Ca2+ supplementation to patient undergoing treatment for metastatic cancer.  相似文献   
7.
Abstract:  This study investigated prey consumption, egg production, percent progeny loss, reproductive, pre- and post-reproductive periods, reproductive time ratio, reproductive rate and bioconversion efficiency of four aphidophagous ladybirds, viz. Cheilomenes sexmaculata (Fabricius), Coccinella septempunctata Linnaeus, Coccinella transversalis Fabricius and Propylea dissecta (Mulsant) on Dolichos lablab Linnaeus infested with cowpea aphid, Aphis craccivora Koch. C. sexmaculata had the highest bioconversion efficiency, reproductive rate and reproductive time ratio followed in rank order by P. dissecta , C. transversalis and C. septempunctata . This study indicates that C. sexmaculata has a narrow ecological relationship with A. craccivora . The increased allocation of resources to reproduction as indicated through a high reproductive time ratio and high bioconversion efficiency of C. sexmaculata and P. dissecta suggest that they may be better adapted to compete for this prey with larger species like C. transversalis and C. septempunctata .  相似文献   
8.
Nicotine treatment of maize seeds at 5.0 and 7.5 mM concentrations caused an increase of 6.2 and 18.7% in amylase activity, respectively. It is being suggested that the positive effect of nicotine on maize is, at least, partially due to increased solubilization of the stored starch through induction of the synthesis or the activity of amylase.  相似文献   
9.
During the reductive process in the tissues, the aerobes generate a number of oxidants. Unless these oxidants are reduced, oxidative damage and cell death would occur. Oxidation of plasma membrane lipids leads to autocatalytic chain reactions which eventually alter the permeability of the cell. The role of oxidative damage in the pathophysiology of diabetic complications and ischemic reperfusion injury of myocardium, especially the changes in the channel activity which may lead to arrhythmia have been studied. Hyperglycemia activates aldose reductase which could efficiently reduce glucose to sorbitol in the presence of NADPH. Since NADPH is also aldose required by glutathione reductase for reducing oxidants, its diversion would lead to membrane lipid oxidation and permeability changes which are probably responsible for diabetic complications such as cataractogenesis, retinopathy, neuropathy etc. Antioxidants such as butylated hydroxy toluene (BHT) and also reductase inhibitors prevent or delay some of these complications. By using patch-clamp technique in isolated frog myocytes, we have shown that hydroxy radicals generated by ferrous sulfate and ascorbate as well as lipid peroxides such as t-butyl hydroperoxide facilitate the entry of Na+ by oxidizing Na+-channels. Increased intracellular Na+ leads to an increase in Na+/Ca2+ exchange. The increased Na+ concentration by itself may produce electrical disturbance which would result in arrhythmia. Increased Ca2+ may affect proteases and may help in the conversion of xanthine dehydrogenase to xanthine oxidase, consequently increased production of super oxide radicals. Increased membrane lipid peroxidation and other oxygen free-radical associated membrane damage in myocytes has been demonstrated.  相似文献   
10.
The influence of the physical state of membrane on L-alanine uptake has been investigated in Saccharomyces cerevisiae KD115, an unsaturated fatty acid auxotrophic mutant. By monitoring the unsaturation index and steady state fluorescence polarization of 1,6 diphenyl hexatriene (DPH), it was observed that at mid log phase the membrane fluidity increased with an increase in the number of double bonds of supplemented fatty acid. Arrhenius plots of the velocities for L-alanine transport in cells grown on palmitoleate, oleate, linoleate and linolenate were biphasic and dependent on supplemented unsaturated fatty acid. Results illustrate a correlation between membrane fluidity and shift in transition points. Further, results confirm the role of fatty acyl milieu in regulation of transport activity of S. cerevisiae.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号