首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Soil pollution is an important ecological problem worldwide. Phytoremediation is an environmental-friendly option for reducing metal pollution. A greenhouse experiment was conducted to determine the growth and physiological response, metal uptake, and the phytostabilization potential of a nontoxic Jatropha curcas L. genotype when grown in multimetal-polluted conditions. Plants were established on a mine residue (MR) amended or not amended with corn biochar (B) and inoculated or not inoculated with the mycorrhizal fungus Acaulospora sp. (arbuscular mycorrhizal fungus, AMF). J. curcas was highly capable of growing in an MR and showed no phytotoxic symptoms. After J. curcas growth (105 days), B produced high desorption of Cd and Pb from the MR; however, no increases in metal shoot concentrations were observed. Therefore, Jatropha may be useful for phytostabilization of metals in mine tailings. The use of B is recommended because improved MR chemical properties conduced to plant growth (cation-exchange capacity, organic matter content, essential nutrients, electrical conductivity, water-holding capacity) and plant growth development (higher biomass, nutritional and physiological performance). Inoculation with an AMF did not improve any plant growth or physiological plant characteristic. Only higher Zn shoot concentration was observed, but it was not phytotoxic. Future studies of B use and its long-term effect on MR remediation should be conducted under field conditions.  相似文献   

2.
Jatropha (Jatropha curcas) is a non‐edible oil producing plant which is being advocated as an alternative biofuel energy resource. Its ability to grow in diverse soil conditions and minimal requirements of essential agronomical inputs compared with other oilseed crops makes it viable for cost‐effective advanced biofuel production. We designed a study to investigate the effects of elevated carbon dioxide concentration ([CO2]) (550 ppm) on the growth, reproductive development, source‐sink relationships, fruit and seed yield of J. curcas. We report, for the first time that elevated CO2 significantly influences reproductive characteristics of Jatropha and improve its fruit and seed yields. Net photosynthetic rate of Jatropha was 50% higher in plants grown in elevated CO2 compared with field and ambient CO2‐grown plants. The study also revealed that elevated CO2 atmosphere significantly increased female to male flower ratio, above ground biomass and carbon sequestration potential in Jatropha (24 kg carbon per tree) after 1 year. Our data demonstrate that J. curcas was able to sustain enhanced rate of photosynthesis in elevated CO2 conditions as it had sufficient sink strength to balance the increased biomass yields. Our study also elucidates that the economically important traits including fruit and seed yield in elevated CO2 conditions were significantly high in J. curcas that holds great promise as a potential biofuel tree species for the future high CO2 world.  相似文献   

3.
Production of Jatropha curcas as a biodiesel feedstock on marginal lands is growing rapidly. Biomass production on these lands is limited. Hence, the objective of this study was to evaluate the effect of arbuscular mycorrhiza (AM) fungi and salinity (0.1, 0.2, 0.3, 0.4, and 0.5% NaCl) on (1) seedling growth, leaf relative water content (RWC), lipid peroxidation, solute accumulation (proline and sugars), and photosynthetic pigments (Chl a and b) of Jatropha; (2) mycorrhizal colonization (%) and mycorrhizal dependency (MD) of Jatropha; and (3) glomalin content (Bradford reactive soil protein) in soil. Increased soil salinity significantly (P < 0.05) decreased AM root colonization (r 2 = 0.98) of AM-inoculated plants and decreased survival (r 2 = 0.93) and growth (shoot length, r 2 = 0.89; tap root length, r 2 = 0.93; shoot diameter, r 2 = 0.99; shoot dry weight, r 2 = 0.92; and root dry weight, r 2 = 0.92) of non-AM-inoculated Jatropha. Under salt stress, AM-inoculated Jatropha plants had greater dry weight of shoots and roots, better leaf water status, less leaf membrane damage (low lipid peroxidation activity), higher solute (proline and sugars), and higher leaf chlorophyll concentrations than non-AM-inoculated plants. The mycorrhizal dependency (MD) of Jatropha increased from 12.13 to 20.84% with salinity (0–0.4% NaCl). Root AM colonization (%) and glomalin content in soil were negatively correlated with salinity (P < 0.05, r = −0.95). We conclude that inoculation with AM fungi lessens the deleterious effect of salt stress on seedling growth parameters under salt levels up to 0.5% NaCl (electrical conductivity of 7.2 dS m−1). Inoculation of Jatropha seedlings with AM fungi can promote the establishment of Jatropha under NaCl-induced stress.  相似文献   

4.
5.
The effect of soil flooding on photosynthesis, transpiration and stomatal conductance of Jatropha curcas seedlings were studied under natural environmental variables. Soil flooding reduced photosynthesis (P N), transpiration (E) and stomatal conductance (gs) in response to leaf positions of Jatropha curcas plants. Based on the results, we conclude that decrease in stomatal opening and stomatal limitation of photosynthesis, followed by decrease in individual leaf area are the main causes of reductions in carbon uptake of flooded seedlings. A mathematical relationship was successfully developed to describe photosynthesis, transpiration and stomatal response of Jatropha under soil flooding stress.  相似文献   

6.
The use of Jatropha curcas oil as a source of biofuel has been well-explored. However, the physiological and growth studies of J. curcas have received considerably lesser attention. In this study, leaf gas exchange measurements and leaf nitrogen content were determined for four varieties of J. curcas, grown in the field or in pots. Based on stable carbon isotope analysis (δ13C) and gas-exchange studies, J. curcas is a C3 sun plant and the range of leaf photosynthetic rates (or CO2 assimilation rates, P Nmax) were typically between 7 and 25 μmol(CO2) m−2 s−1 and light saturation generally occurred beyond 800 μmol(quanta) m−2 s−1. Higher rates of leaf photosynthesis were generally obtained with the mature leaves. In addition, increased foliar P Nmax were recorded in potted J. curcas variety Indiana with increasing nitrogen (N) nutrition levels. These plants also showed greater growth, increased leaf N content, higher maximum CO2 assimilation capacity (P NhighCO2) and chlorophyll (Chl) content, indicating the potential of optimizing the growth of Jatropha by varying fertilizer nutrient levels. A rapid assessment for leaf N using a nondestructive and portable Chl meter had been established for J. curcas. This approach will allow repeated sampling of the same plant over time and thus enable the monitoring of the appropriate levels of soil fertility to achieve good Jatropha plantation productivity. High N nutrition improved the overall plant oil yield by increasing the total number of fruits/seeds produced per plant, while not affecting the intrinsic seed oil content.  相似文献   

7.
Contamination of soils with copper (Cu) has become a serious problem in the environment. Phytoremediation is an emerging green technology that uses green plants to remediate heavy metal contaminated areas. This study was conducted to evaluate the potential of Jatropha curcas for remediation of soils contaminated with Cu. Seedlings were planted in soils spiked with Cu in amount of 0, 50, 100, 200, 300, and 400 mg kg–1 (Cu0, Cu50,Cu100,Cu200,Cu300, and Cu400) for a period of five months. The maximum height and number of leaves were recorded in control (Cu0) whereas the highest basal stem diameter was found in seedlings exposed to Cu50. Copper concentrations among plant parts were in the following trend: roots > stems > leaves. The highest total Cu concentration (665 ± 1 mg kg?1) and total Cu removal (1.2 ± 0.2%) based on total plant dry biomass were found in Cu400 and Cu50 treatments, respectively. J. curcas exhibited high root concentration factor (RCF > 1) and low translocation factor (TF < 1). Although Cu accumulation by the plant didn't reach the criteria of Cu hyperaccumulators, this species showed a potential to be used in phytostabilization of mildly Cu contaminated areas. However, the plant cannot be used for phytoextraction of Cu-contaminated soils.  相似文献   

8.
Jatropha curcas L. is gaining importance as a potential energy crop. However, lack of sufficient numbers of molecular markers hinder current research on crop improvement in Jatropha. The expressed sequences tags (EST) sequences deposited in public databases, offers an excellent opportunity to identify simple sequence repeats (SSRs) through data mining, for further research on molecular breeding. In the present study 42,477 ESTs of J. curcas were screened, out of which 5,673 SSRs were identified with 48.8 % simple (excluding mononucleotide repeats) and 52.2 % compound repeat motifs. Amongst these repeat motifs, dinucleotide repeats were abundant (26.5 %), followed by trinucleotide (23.1 %) and tetranucleotide repeats (0.8 %). From these microsatellites, 32 EST-SSR (genic microsatellite) primer pairs were designed. These primers were used to analyze the genetic diversity among 42 accessions collected from different parts of India. Out of the 32 EST-SSR primers, 24 primer pairs exhibited polymorphism among the genotypes, with amplicons varying from one to eight, giving an average of 2.33 alleles per polymorphic marker. Polymorphic information content value ranged from 0.02 to 0.5 with an average of 0.402 indicating moderate level of informativeness within these EST-SSRs markers. The EST-SSR markers developed here will serve as a valuable resource for genetic studies, like linkage mapping, diversity analysis, quantitative trait locus/association mapping, and molecular breeding. The current study also revealed low diversity in the screened Indian Jatropha germplasm. Therefore, the future efforts must be made to broaden the gene pool of Jatropha for the creation of genetic diversity that can be further used for crop improvement through breeding.  相似文献   

9.
Jatropha (Jatropha curcas) and castor bean (Ricinus communis) possess several taxonomic similarities, and their seeds contain a high proportion of oil (up to 40%) which has been used in various industrial products, including diesel oil. Thirty-two candidate genes responsible for fatty acid biosynthesis were identified in the castor bean genome sequence. Testing of 48 primer pairs from candidate gene regions, including 12 SSRs from castor bean on 54 genotypes of J. curcas, 65% amplified successfully on Jatropha out of which 20% showed polymorphisms. Jatropha genotypes, categorized for oil content, were used in association analysis of candidate gene regions with high oil content. One marker–trait association for the oil trait was identified. Stearoyl desaturase amplicon (700 bp) consisting of intron and exon (P?=?0.00013) showed association with high oil content in Jatropha genotypes. Sequencing of the 1.3-kb amplicon, including the 700-bp fragment of stearoyl desaturase, which had shown association with the high oil content, revealed SNPs in the exonic region. The SNPs resulted in substitution of leucine with glutamine in the open reading frame of stearoyl desaturase of low oil content genotypes. The molecular marker is expected to be useful in marker-assisted breeding of high oil content genotypes in Jatropha.  相似文献   

10.
Jatropha curcas, the energy plant has attained great attention in recent years because of its biodiesel production potential and medicinal value. This makes it imperative to search for techniques for its rapid propagation. Our research communication has shown for the first time direct organogenesis without callus formation from embryo culture of Jatropha. All previous reports embody callusing before further propagation and use of whole seeds. We also report the very economical protocol for J. curcas using cyanobacterial culture filtrate (Aulosira fertilissima) in place of chemical hormones giving this paper a cutting edge to in vitro propagation of J. curcas. The result showed that the number of days taken for shoots and root induction was quicker by adding the cyanobacterial filtrate and shoot and root length was comparatively higher than the other treatment with synthetic plant growth regulator. The same trend was found for chlorophyll a and b. No such report previously has ever focused on the use of cyanobacterial filtrate on in vitro germination of J. curcas embryo to regenerate plants at a faster rate. Ex vitro rooting is a new approach, which will reduce the time for regeneration still further, is an area that is being presently tried out.  相似文献   

11.
Although the process for making EN 14214 grade Jatropha methyl ester (biodiesel) capable of running unmodified diesel engines in neat form has been demonstrated, getting higher seed yield from Jatropha shrubs in wastelands is critical to the success of Jatropha biodiesel. But, low productivity is inherent to many Jatropha curcas germplasms and raising large-scale plantations using such untested planting material can lead to wasteful expenditures. Unreliable and poor flowering and fruiting are important factors responsible for low productivity in the species. Although much is known about growth retardants applied to field and horticultural crops, their role in improving the seed productivity of Jatropha has never been explored. Here we report for the first time that paclobutrazol could be an extremely useful chemical, whose dose and time of application, if optimized, can significantly reduce unwanted vegetative growth, with concomitant improvement in yield and seed oil content of Jatropha. In the year following application of paclobutrazol, an unexpected increase in seed yield, as high as 1127% relative to controls, was obtained from one such unproductive Jatropha germplasm. We hypothesize that low seed production in this species may be a result of excess vegetative growth caused by an unfavorable endogenous hormonal configuration which competes with growth and development of flower, fruit, or seed. This undesired physiological state can be reversed by paclobutrazol application to achieve maximum oil yield from this energy shrub that holds great promise in the future.  相似文献   

12.
In order to establish a highly efficient and sustainable regeneration system, we systematically researched the key factors affecting direct shoot regeneration from Jatropha curcas leaves that were collected from Hainan (HN1-1), Lijiang (LJ3-1), and Yuxi (YX2-12) provinces in China. The L9(34) orthogonal test of thidiazuron (TDZ), kinetin (Kn), and gibberellic acid (GA3) were studied, and the explant type, growth age, and cultivar of leaves were subsequently investigated. Simultaneously, the combinations of plant growth regulators (PGRs) promoting shoot bud proliferation, elongation, and root establishment were examined. The results showed that the best medium for shoot bud induction was Murashige and Skoog (MS) medium supplemented with 1.0 mg/L TDZ, 0.5 mg/L Kn, and 0.5 mg/L GA3. TDZ was the key PGR, while Kn and GA3 played an important role in shoot bud elongation and the number of shoots per leaf disk, respectively. The induced shoot buds proliferated and readily elongated in MS medium with 0.3 mg/L 6-benzylaminopurine and 0.01 mg/L indole-3-butyric acid (IBA) and established roots in half-strength MS medium supplemented with 2.0 mg/L IBA. Using the previously described methods, the third to fifth leaves were found to be the best explant source for shoot bud induction, with a high induction rate, large shoot numbers per disk, excellent proliferation, and consistent rooting. With the use of this regeneration system, the shoot bud induction rate increased from the reported rate of 53.5% to more than 90% using different explants and cultivars, and the shoot number per leaf disk (shoot length?≥?0.5 cm) increased from 1.6 to 3.5. Thus, this optimized regeneration system will effectively promote the propagation and genetic transformation of J. curcas.  相似文献   

13.
This study investigated the effect of arbuscular mycorrhizal (AM) fungal consortia on growth, photosynthetic pigments, solutes concentration (e.g., sugars and proline), and antioxidant responses at different levels of Na2SO4 stress (0–0.5%, w:w) in potted culture of Jatropha. Results showed that increasing salt levels caused a significant reduction in survival (%), growth parameters, leaf relative water content (LRWC) (%), and chlorophyll content with an increase in electrolyte leakage (%) and lipid peroxidation of membranes of Jatropha. AM inoculation improved biomass yields as well as other physiological parameters (LRWC (%), chlorophyll, proline, and soluble sugar) of salt-stressed Jatropha over noninoculated plants. Tolerance index of Jatropha was higher with AM fungi than without at all salt levels; however, a decline in its value was recorded with increased salinity levels. AM inoculation also enhanced the activities of antioxidant enzymes (e.g., superoxide dismutase, peroxidase, ascorbate peroxidase, and glutathione reductase) and decreased oxidative damage to lipids. In conclusion, results indicate that AM inoculation was capable of alleviating the damage caused by salinity stress on Jatropha plants by reducing lipid peroxidation of membrane and membrane permeability and increasing the accumulation of solutes and antioxidant enzyme activity.  相似文献   

14.
Jatropha curcas shows invasive characters and is a significant source of many phytochemicals with varying biological activities. Different plant parts of Jatropha curcas L exhibited variation in their phytochemical constituents. Leaves and ovary walls were found to contain higher contents of total phenols, tannins and phytic acid whereas free amino acids were greater in leaves. Young leaves of Jatropha show greater contents of all these metabolites. Further, plants exhibit seasonal differences as leaves collected during summer (May-June) have greater accumulation of total phenols, tannins and free amino acids however, phytic acid was more during rainy season. Leachates and extracts in their higher concentrations adversely affected the germination and growth of wheat seedlings however, lower concentrations were more or less stimulatory. These treatments not only decreased the length, fresh and dry weight of seedlings but also affected the chlorophyll contents and activity of enzymes such as nitrate reductase, aminotransferases in wheat seedlings however, the activity of superoxide dismutase and ascorbate peroxidases increased. Experiments indicate harmful allelopathic effects of Jatropha leachates /extracts on wheat seedlings, hence further experimentation and analysis is recommended before continued plantation of Jatropha particularly on fertile soils. However. Growth of Jatropha plants on saline soils and their potential for accumulating sodium, potassium and chloride are the attributes suggesting the possibility of use of Jatropha plants in improving saline soils.  相似文献   

15.
Cold stress is one of the major environmental factors limiting the amount of plant mass for bioenergy production. A chilling-sensitive Jatropha (Jatropha curcas L.) as a bioenergy crop was used to investigate the cold injury process at the physiological and biochemical levels. Various physiological parameters such as leaf length, width, stomatal conductance, chlorophyll fluorescence, and electrolyte leakage were measured to determine the growth rate of leaves cold-treated (7 and 2 °C) for 5 days. These parameters of cold-treated Jatropha were significantly reduced from day 1 compared with control (23 °C). Using the pH indicator bromocresol purple, it was shown that surface pH of Jatropha root in control was strongly acidified by time only from the starting pH 6, while H+-efflux of the surface of cold-treated roots did not change. H+-ATPase activity of plasma membrane (PM) isolated from leaves and roots of cold-treated Jatropha was decreased in a time-dependent manner. The expression of PM H+-ATPase and 14-3-3 protein, which participates in phosphorylation of PM H+-ATPase was reduced in the presence of cold stress. Interestingly, fusicoccin, an activator of the PM H+-ATPase, alleviated cold-injury by stimulating the enzyme in leaves. These results may suggest that the activity and expression of PM H+-ATPase in Jatropha is closely related to the overcoming of cold stress.  相似文献   

16.
Genus Jatropha with 172 species having significant economic importance belongs to the family Euphorbiaceae. There are no reports on molecular characterization and phylogenetic relationship among the species of Jatropha. Hence, the present study was undertaken to assess the extent of genetic variability that exist and also to establish phylogenetic relationship among Jatropha curcas, J. glandulifera, J. gossypifolia, J. integerrima, J. multifida, J. podagrica and J. tanjorensis using RAPD and AFLP. The percentage of loci that are polymorphic among the species studied was found to be 97.74% by RAPD and 97.25% by AFLP. The mean percentage of polymorphism (PP) was found to be 68.48 by RAPD and 71.33 by AFLP. The phylogram generated with RAPD and AFLP data showed maximum similarity. With the generated data maximum relatedness was found between J. curcas and J. integerrima this may be the reason for the success of inter hybrid crosses between these two species. Neither RAPD nor AFLP data generated in this study supports the view of J. tanjorensis, a natural interspecific hybrid between J. curcas and J. gossypifolia. The present study concludes that both RAPD and AFLP techniques are comparable in divergence studies of Jatropha species. The markers generated by RAPD and AFLP can be employed efficiently for interspecific hybrids identification, marker assisted selection and genetic resource management.  相似文献   

17.
Jatropha curcas (jatropha) is a potential biodiesel crop. A major limitation in production is that jatropha remains wild with low genetic variation. Related species/genera in the Euphorbiaceae can potentially be used for its genetic improvement. In this study, we employed inter-simple sequence repeats (ISSRs) to assess genetic variation among 30 accessions of jatropha, two accessions of bellyache bush (Jatropha gossypifolia), two accessions of spicy jatropha (Jatropha integerrima), two accessions of bottleplant shrub (Jatropha podagrica), and three accessions of castor bean hybrids. Genetic relationships were evaluated using 27 of 86 ISSR markers, yielding 307 polymorphic bands with polymorphism contents ranging from 0.76 to 0.95 for IMPN 1 and UBC 807 markers, respectively. Dice’s genetic similarity coefficient ranged from 0.39 to 0.99, which clearly separated the plant samples into seven groups at the coefficient of 0.48. The first group comprised J. curcas from Mexico, the second group comprised J. curcas from China and Vietnam, the third group comprised J. curcas from Thailand, the fourth group was J. integerrima, the fifth group was J. gossypifolia, the sixth group was J. podagrica, and the last and most distinct group was Ricinus communis. Analysis of molecular variance revealed that 63% of the variability was attributable to variation among groups, while 37% was due to variation within groups. Based on Nei’s genetic distance, the population from G2 (J. curcas from China) and G4 (J. curcas from Vietnam) had the least ISSR variability (0.0668), whereas G8 (R. communis) and Jatropha spp. displayed the highest distance (0.6005–0.7211).  相似文献   

18.
Arbuscular mycorrhizal fungi (AMF) colonisation of plant root facilitates the absorption of nutrients such as phosphorus (P) and enhances plant biotic and abiotic resistance generally. However, arbuscular mycorrhiza (AM) colonisation decreases with application of chemical fertiliser. Here, we investigated whether AMF inoculation in nurseries would facilitate AM colonisation and take physiological and ecological functions in watermelon (Citrullus lanatus) in the field. Pot experiments were carried out to study the change of AMF colonised seedling on physiology and gene expression in nursery site. Field experiments were performed to investigate the effect of nursery AMF inoculation on yield, quality and disease resistance of watermelon in the field. The results showed that nursery‐inoculated seedlings produced more dry matter and root surface area than non‐inoculated seedlings. Expression of the secretory purple acid phosphatase (PAP) genes ClaPAP10 and ClaPAP26 was up‐regulated following AMF colonisation. Accordingly, acid phosphatase activities at the root surface and P concentrations in seedling were enhanced. After transplantation to the field, the shoot dry matter and P concentration in old stem were higher in the nursery AMF inoculated seedlings than that in non‐AMF inoculated seedling. AMF inoculation also induced increase of yields and decrease of wilt disease indexes and soluble sugar content. In addition, acid phosphatase activities and AMF spore densities were increased by nursery‐inoculation in watermelon rhizosphere soil in the field. In conclusion, nursery colonisation AMF seedling enhanced watermelon growth and yield by improving the root growth and P acquisition in nursery cultivating stage, as well as optimised soil properties in the field. Nursery cultivation of watermelon seedling with AMF was an effective technique to reduce wilt disease in continuous cropped management in watermelon.  相似文献   

19.
Direct interactions that occur between members of different microbial types often result in the promotion of key processes that benefit plant growth and health. In the present study, four isolates, Brevibacillus brevis (MS1), Bacillus licheniformis (MS3), Micrococcus sp. (MS4), and Acinetobacter calcoaceticus (MS5), were used to develop multispecies consortia. They have the ability to produce IAA, solubilize inorganic P, and produce ACC deaminase and siderophore. The growth profile of MS1 was similar in monospecies and mixed-species cultures, but about a 24?% increase in mean growth rate was recorded for MS5. They enhanced the growth of Jatropha curcas in individual trials. Plant growth further improved maximally when the three were applied together. All four strains enhanced Jatropha growth in greenhouse and field experiments. Co-inoculation provides the largest and most consistent increases in shoot weight, root weight, total biomass, shoot and root length, total chlorophyll, shoot width, and grain yield.  相似文献   

20.
The fuel crisis and environmental concerns, mainly due to global warming, have led researchers to consider the importance of biofuels such as biodiesel. Vegetable oils, which are too viscous to be used directly in engines, are converted into their corresponding methyl or ethyl esters by a process called transesterification. With the recent debates on “food versus fuel,” non-edible oils, such as Jatropha curcas, are emerging as one of the main contenders for biodiesel production. Much research is still needed to explore and realize the full potential of a green fuel from J. curcas. Upcoming projects and plantations of Jatropha in countries such as India, Malaysia, and Indonesia suggest a promising future for this plant as a potential biodiesel feedstock. Many of the drawbacks associated with chemical catalysts can be overcome by using lipases for enzymatic transesterification. The high cost of lipases can be overcome, to a certain extent, by immobilization techniques. This article reviews the importance of the J. curcas plant and describes existing research conducted on Jatropha biodiesel production. The article highlights areas where further research is required and relevance of designing an immobilized lipase for biodiesel production is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号