首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   32篇
  免费   6篇
  2020年   1篇
  2017年   1篇
  2014年   1篇
  2010年   2篇
  2009年   1篇
  2008年   2篇
  2007年   2篇
  2006年   1篇
  2005年   4篇
  2004年   4篇
  2003年   6篇
  2002年   5篇
  2001年   1篇
  1996年   1篇
  1992年   1篇
  1991年   1篇
  1988年   2篇
  1987年   1篇
  1986年   1篇
排序方式: 共有38条查询结果,搜索用时 31 毫秒
1.
We have investigated the variation in human ribosomal DNA repeat units as revealed in two-dimensional electrophoretic separations of genomic restriction fragments that were end-labeled at NotI cleavage sites. The transcribed portion of the ribosomal DNA results in ~20 labeled fragments visible on each gel as multicopy spots. We have mapped these spots to the sequences responsible for their appearance on the gels, based on their migration positions and direct sequencing of spots, and describe several previously unreported sources of variation. By studying mother/father/child families we gained information on how much of the between-repeats variation is due to differences between and within repeat arrays on homologous chromosomes. Two instances in which a child exhibited more copies of a particular fragment than were present in the parents are described and hypothesized to be due to events such as multiple unequal sister-chromatid exchanges or gene conversions.  相似文献   
2.
The defective gene DYS, which is responsible for familial dysautonomia (FD) and has been mapped to a 0.5-cM region on chromosome 9q31, has eluded identification. We identified and characterized the RNAs encoded by this region of chromosome 9 in cell lines derived from individuals homozygous for the major FD haplotype, and we observed that the RNA encoding the IkappaB kinase complex-associated protein (IKAP) lacks exon 20 and, as a result of a frameshift, encodes a truncated protein. Sequence analysis reveals a T-->C transition in the donor splice site of intron 20. In individuals bearing a minor FD haplotype, a missense mutation in exon 19 disrupts a consensus serine/threonine kinase phosphorylation site. This mutation results in defective phosphorylation of IKAP. These mutations were observed to be present in a random sample of Ashkenazi Jewish individuals, at approximately the predicted carrier frequency of FD. These findings demonstrate that mutations in the gene encoding IKAP are responsible for FD.  相似文献   
3.
Acetaminophen was administered acutely at the onset of reperfusion after 20 min of low-flow, global myocardial ischemia in isolated, perfused guinea pig hearts (Langendorff) to evaluate its influence in the postischemia, reperfused myocardium. Similarly prepared hearts were treated with vehicle or with uric acid (another phenol for comparison). Functionally, acetaminophen-treated hearts (0.35 mM) achieved significantly greater recovery during reperfusion. For example, left ventricular developed pressures at 40 min reperfusion were 38 +/- 3, 27 +/- 3, and 20 +/- 2 in the presence of acetaminophen (P < 0.05, relative to the other two groups), vehicle, and uric acid, respectively. Coronary perfusion pressures and calculated coronary vascular resistances, in the acetaminophen-treated hearts, were significantly lower at the same time (e.g., coronary perfusion pressures in the three groups, respectively, were 40 +/- 2 [P < 0.05], 51 +/- 3, and 65 +/- 12 mm Hg). Under baseline, control conditions, creatine kinase ranged from 12-15 units/liter in the three groups. It increased to 35-40 units/liter (P < 0.05) during ischemia but was significantly reduced by acetaminophen during reperfusion (e.g., 5.3 +/- 0.8 units/liter at 40 min). Oxidant-mediated chemiluminescence in all three treatment groups during baseline conditions and ischemia was similar (i.e., approximately 1.5-2.0 min for peak luminescence to reach its half maximal value). It took significantly more time during reperfusion for the oxidation of luminol in the presence of acetaminophen (>20 min, P < 0.05) than in its absence (3-8 min in uric acid- and vehicle-treated hearts). These results suggest that administration of acetaminophen (0.35 mM), at the onset of reperfusion, provides anti-oxidant-mediated cardioprotection in the postischemia, reperfused myocardium.  相似文献   
4.
5.
We have implemented an orthogonal 3-D intact protein analysis system (IPAS) to quantitatively profile protein differences between human serum and plasma. Reference specimens consisting of pooled Caucasian-American serum, citrate-anticoagulated plasma, and EDTA-anticoagulated plasma were each depleted of six highly abundant proteins, concentrated, and labeled with a different Cy dye (Cy5, Cy3, or Cy2). A mixture consisting of each of the labeled samples was subjected to three dimensions of separation based on charge, hydrophobicity, and molecular mass. Differences in the abundance of proteins between each of the three samples were determined. More than 5000 bands were found to have greater than two-fold difference in intensity between any pair of labeled specimens by quantitative imaging. As expected, some of the differences in band intensities between serum and plasma were attributable to proteins related to coagulation. Interestingly, many proteins were identified in multiple fractions, each exhibiting different pI, hydrophobicity, or molecular mass. This is likely reflective of the expression of different protein isoforms or specific protein cleavage products, as illustrated by complement component 3 precursor and clusterin. IPAS provides a high resolution, high sensitivity, and quantitative approach for the analysis of serum and plasma proteins, and allows assessment of PTMs as a potential source of biomarkers.  相似文献   
6.
Mast cells are found in the heart and contribute to reperfusion injury following myocardial ischemia. Since the activation of A2A adenosine receptors (A2AARs) inhibits reperfusion injury, we hypothesized that ATL146e (a selective A2AAR agonist) might protect hearts in part by reducing cardiac mast cell degranulation. Hearts were isolated from five groups of congenic mice: A2AAR+/+ mice, A2AAR(-/-) mice, mast cell-deficient (Kit(W-sh/W-sh)) mice, and chimeric mice prepared by transplanting bone marrow from A2AAR(-/-) or A2AAR+/+ mice to radiation-ablated A2AAR+/+ mice. Six weeks after bone marrow transplantation, cardiac mast cells were repopulated with >90% donor cells. In isolated, perfused hearts subjected to ischemia-reperfusion injury, ATL146e or CGS-21680 (100 nmol/l) decreased infarct size (IS; percent area at risk) from 38 +/- 2% to 24 +/- 2% and 22 +/- 2% in ATL146e- and CGS-21680-treated hearts, respectively (P < 0.05) and significantly reduced mast cell degranulation, measured as tryptase release into reperfusion buffer. These changes were absent in A2AAR(-/-) hearts and in hearts from chimeric mice with A2AAR(-/-) bone marrow. Vehicle-treated Kit(W-sh/W-sh) mice had lower IS (11 +/- 3%) than WT mice, and ATL146e had no significant protective effect (16 +/- 3%). These data suggest that in ex vivo, buffer-perfused hearts, mast cell degranulation contributes to ischemia-reperfusion injury. In addition, our data suggest that A2AAR activation is cardioprotective in the isolated heart, at least in part by attenuating resident mast cell degranulation.  相似文献   
7.
An imprinting disorder has been believed to underlie the etiology of familial biparental hydatidiform moles (HMs) based on the abnormal methylation or expression of imprinted genes in molar tissues. However, the extent of the epigenetic defect in these tissues and the developmental stage at which the disorder begins have been poorly defined. In this study, we assessed the extent of abnormal DNA methylation in two HMs caused by mutations in the recently identified 19q13.4 gene, NALP7. We demonstrate normal postzygotic DNA methylation patterns at major repetitive and long interspersed nuclear elements (LINEs), genes on the inactive X-chromosome, three-cancer related genes, and CpG rich regions surrounding the PEG3 differentially methylated region (DMR). Our data provide a comprehensive assessment of DNA methylation in familial molar tissues and indicate that abnormal DNA methylation in these tissues is restricted to imprinted DMRs. The known role of NALP7 in apoptosis and inflammation pinpoints previously unrecognized pathways that could directly or indirectly underlie the abnormal methylation of imprinted genes in molar tissues.Electronic Supplementary Material Supplementary material is available to authorised users in the online version of this article at .  相似文献   
8.
Gene-expression profiles predict survival of patients with lung adenocarcinoma   总被引:33,自引:0,他引:33  
Histopathology is insufficient to predict disease progression and clinical outcome in lung adenocarcinoma. Here we show that gene-expression profiles based on microarray analysis can be used to predict patient survival in early-stage lung adenocarcinomas. Genes most related to survival were identified with univariate Cox analysis. Using either two equivalent but independent training and testing sets, or 'leave-one-out' cross-validation analysis with all tumors, a risk index based on the top 50 genes identified low-risk and high-risk stage I lung adenocarcinomas, which differed significantly with respect to survival. This risk index was then validated using an independent sample of lung adenocarcinomas that predicted high- and low-risk groups. This index included genes not previously associated with survival. The identification of a set of genes that predict survival in early-stage lung adenocarcinoma allows delineation of a high-risk group that may benefit from adjuvant therapy.  相似文献   
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号