首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   79篇
  免费   10篇
  国内免费   8篇
  2023年   2篇
  2021年   2篇
  2018年   4篇
  2017年   3篇
  2016年   4篇
  2015年   12篇
  2014年   9篇
  2013年   5篇
  2012年   13篇
  2011年   6篇
  2010年   3篇
  2008年   4篇
  2007年   3篇
  2006年   1篇
  2005年   1篇
  2004年   1篇
  2002年   9篇
  2001年   3篇
  2000年   2篇
  1998年   1篇
  1995年   1篇
  1994年   1篇
  1993年   1篇
  1992年   2篇
  1990年   1篇
  1989年   3篇
排序方式: 共有97条查询结果,搜索用时 31 毫秒
1.
2.
3.
通过DNA体外重组技术,以pET-3b为表达载体,构建了重组表达质粒pET-6R(B)和PET-6R(B)4,分别编码28kD的hIL-6R配基结合区片段及其53kD的二联体蛋白,并为酶切分析和DNA序列分析所证实。SDS-PAGE分析表明,含有重组表达质粒的菌株可分别表达出28kD的蛋白rIL6R-28和53kD的rIL6R-53。重组蛋白分别占菌体总蛋白的45%和29%左右。重组蛋白主要以包涵体形式存在,Western印迹表明重组蛋白具有IL-6R的抗原性。  相似文献   
4.
A A Iglesias  Y Y Charng  S Ball    J Preiss 《Plant physiology》1994,104(4):1287-1294
ADP-glucose pyrophosphorylase (ADP-Glc PPase) from Chlamydomonas reinhardtii cells was purified over 2000-fold to a specific activity of 81 units/mg protein, and its kinetic and regulatory properties were characterized. Inorganic orthophosphate and 3-phosphoglycerate were the most potent inhibitor and activator, respectively. Rabbit antiserum raised against the spinach leaf ADP-Glc PPase (but not the one raised against the enzyme from Escherichia coli) inhibited the activity of the purified algal enzyme, which migrated as a single protein band in native polyacrylamide gel electrophoresis. Two-dimensional and sodium dodecyl sulfate-polyacrylamide gel electrophoresis indicate that the enzyme from C. reinhardtii is composed of two subunits with molecular masses of 50 and 53 kD, respectively. The molecular mass of the native enzyme is estimated to be 210 kD. Antisera raised against the spinach leaf holoenzyme and against the 51-kD spinach subunit cross-reacted with both subunits of the algal ADP-Glc PPase in immunoblot hybridization, but the cross-reaction was stronger for the 50-kD algal subunit than for the 53-kD subunit. No cross-reaction was observed when antiserum raised against the spinach leaf pyrophosphorylase 54-kD subunit was used. These results suggest that the ADP-Glc PPase from C. reinhardtii is a heterotetrameric protein, since the enzyme from higher plants and its two subunits are structurally more related to the small subunit of the spinach leaf enzyme than to its large subunit. This information is discussed in the context of the possible evolutionary changes leading from the bacterial ADP-Glc PPase to the cyanobacterial and higher plant enzymes.  相似文献   
5.
Two Pseudomonas species (designated strains B1 and X1) were isolated from an aerobic pilot-scale fluidized bed reactor treating groundwater containing benzene, toluene, and p-xylene (BTX). Strain B1 grew with benzene and toluene as the sole sources of carbon and energy, and it cometabolized p-xylene in the presence of toluene. Strain X1 grew on toluene and p-xylene, but not benzene. In single substrate experiments, the appearance of biomass lagged the consumption of growth substrates, suggesting that substrate uptake may not be growth-rate limiting for these substrates. Batch tests using paired substrates (BT, TX, or BX) revealed competitive inhibition and cometabolic degradation patterns. Competitive inhibition was modeled by adding a competitive inhibition term to the Monod expression. Cometabolic transformation of nongrowth substrate (p-xylene) by strain B1 was quantified by coupling xylene transformation to consumption of growth substrate (toluene) during growth and to loss of biomass during the decay phase. Coupling was achieved by defining two transformation capacity terms for the cometabolizing culture: one that relates consumption of growth substrate to the consumption of nongrowth substrate, and second that relates consumption of biomass to the consumption of nongrowth substrate. Cometabolism increased decay rates, and the observed yield for strain B1 decreased in the presence of p-xylene. (c) 1993 Wiley & Sons, Inc.  相似文献   
6.
7.
Proper regulation of mitophagy for mitochondrial homeostasis is important in various inflammatory diseases. However, the precise mechanisms by which mitophagy is activated to regulate inflammatory responses remain largely unknown. The NLRP3 (NLR family, pyrin domain containing 3) inflammasome serves as a platform that triggers the activation of CASP1 (caspase 1) and secretion of proinflammatory cytokines. Here, we demonstrate that SESN2 (sestrin 2), known as stress-inducible protein, suppresses prolonged NLRP3 inflammasome activation by clearance of damaged mitochondria through inducing mitophagy in macrophages. SESN2 plays a dual role in inducing mitophagy in response to inflammasome activation. First, SESN2 induces “mitochondrial priming” by marking mitochondria for recognition by the autophagic machinery. For mitochondrial preparing, SESN2 facilitates the perinuclear-clustering of mitochondria by mediating aggregation of SQSTM1 (sequestosome 1) and its binding to lysine 63 (Lys63)-linked ubiquitins on the mitochondrial surface. Second, SESN2 activates the specific autophagic machinery for degradation of primed mitochondria via an increase of ULK1 (unc-51 like kinase 1) protein levels. Moreover, increased SESN2 expression by extended LPS (lipopolysaccharide) stimulation is mediated by NOS2 (nitric oxide synthase 2, inducible)-mediated NO (nitric oxide) in macrophages. Thus, Sesn2-deficient mice displayed defective mitophagy, which resulted in hyperactivation of inflammasomes and increased mortality in 2 different sepsis models. Our findings define a unique regulatory mechanism of mitophagy activation for immunological homeostasis that protects the host from sepsis.  相似文献   
8.
Six α-monoglucosyl derivatives of ginsenoside Rg1 (G-Rg1) were synthesized by transglycosylation reaction of rice seed α-glucosidase in the reaction mixture containing maltose as a glucosyl donor and G-Rg1 as an acceptor. Their chemical structures were identified by spectroscopic analysis, and the effects of reaction time, pH, and glycosyl donors on transglycosylation reaction were investigated. The results showed that rice seed α-glucosidase transfers α-glucosyl group from maltose to G-Rg1 by forming either α-1,3 (α-nigerosyl)-, α-1,4 (α-maltosyl)-, or α-1,6 (α-isomaltosyl)-glucosidic linkages in β-glucose moieties linked at the C6- and C20-position of protopanaxatriol (PPT)-type aglycone. The optimum pH range for the transglycosylation reaction was between 5.0 and 6.0. Rice seed α-glucosidase acted on maltose, soluble starch, and PNP α-D-glucopyranoside as glycosyl donors, but not on glucose, sucrose, or trehalose. These α-monoglucosyl derivatives of G-Rg1 were easily hydrolyzed to G-Rg1 by rat small intestinal and liver α-glucosidase in vitro.  相似文献   
9.
In an attempt to improve stress tolerance of tomato (Lycopersicon esculentum) plants, an expression vector containing an Arabidopsis C-repeat/dehydration responsive element binding factor 1 (CBF1) cDNA driven by a cauliflower mosaic virus 35S promoter was transferred into tomato plants. Transgenic expression of CBF1 was proved by northern- and western-blot analyses. The degree of chilling tolerance of transgenic T(1) and T(2) plants was found to be significantly greater than that of wild-type tomato plants as measured by survival rate, chlorophyll fluorescence value, and radical elongation. The transgenic tomato plants exhibited patterns of growth retardation; however, they resumed normal growth after GA(3) (gibberellic acid) treatment. More importantly, GA(3)-treated transgenic plants still exhibited a greater degree of chilling tolerance compared with wild-type plants. Subtractive hybridization was performed to isolate the responsive genes of heterologous Arabidopsis CBF1 in transgenic tomato plants. CATALASE1 (CAT1) was obtained and showed activation in transgenic tomato plants. The CAT1 gene and catalase activity were also highly induced in the transgenic tomato plants. The level of H(2)O(2) in the transgenic plants was lower than that in the wild-type plants under either normal or cold conditions. The transgenic plants also exhibited considerable tolerance against oxidative damage induced by methyl viologen. Results from the current study suggest that heterologous CBF1 expression in transgenic tomato plants may induce several oxidative-stress responsive genes to protect from chilling stress.  相似文献   
10.
Trichomoniasis caused by the parasitic protozoan Trichomonas vaginalis is the most common sexually transmitted disease in the world. Dendritic cells are antigen presenting cells that initiate immune responses by directing the activation and differentiation of naïve T cells. In this study, we analyzed the effect of Trichomonas vaginalis-derived Secretory Products on the differentiation and function of dendritic cells. Differentiation of bone marrow-derived dendritic cells in the presence of T. vaginalis-derived Secretory Products resulted in inhibition of lipopolysaccharide-induced maturation of dendritic cells, down-regulation of IL-12, and up-regulation of IL-10. The protein components of T. vaginalis-derived Secretory Products were shown to be responsible for altered function of bone marrow-derived dendritic cells. Chromatin immunoprecipitation assay demonstrated that IL-12 expression was regulated at the chromatin level in T. vaginalis-derived Secretory Productstreated dendritic cells. Our results demonstrated that T. vaginalis-derived Secretory Products modulate the maturation and cytokine production of dendritic cells leading to immune tolerance. [BMB Reports 2015; 48(2): 103-108]  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号