首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   55篇
  免费   10篇
  国内免费   10篇
  2024年   1篇
  2023年   5篇
  2022年   4篇
  2021年   10篇
  2020年   7篇
  2019年   9篇
  2018年   3篇
  2017年   4篇
  2016年   3篇
  2015年   4篇
  2014年   6篇
  2013年   5篇
  2012年   3篇
  2011年   4篇
  2010年   4篇
  2008年   3篇
排序方式: 共有75条查询结果,搜索用时 857 毫秒
1.

Aim

Understanding how species' traits and environmental contexts relate to extinction risk is a critical priority for ecology and conservation biology. This study aims to identify and explore factors related to extinction risk between herbaceous and woody angiosperms to facilitate more effective conservation and management strategies and understand the interactions between environmental threats and species' traits.

Location

China.

Taxon

Angiosperms.

Methods

We obtained a large dataset including five traits, six extrinsic variables, and 796,118 occurrence records for 14,888 Chinese angiosperms. We assessed the phylogenetic signal and used phylogenetic generalized least squares regressions to explore relationships between extinction risk, plant traits, and extrinsic variables in woody and herbaceous angiosperms. We also used phylogenetic path analysis to evaluate causal relationships among traits, climate variables, and extinction risk of different growth forms.

Results

The phylogenetic signal of extinction risk differed among woody and herbaceous species. Angiosperm extinction risk was mainly affected by growth form, altitude, mean annual temperature, normalized difference vegetation index, and precipitation change from 1901 to 2020. Woody species' extinction risk was strongly affected by height and precipitation, whereas extinction risk for herbaceous species was mainly affected by mean annual temperature rather than plant traits.

Main conclusions

Woody species were more likely to have higher extinction risks than herbaceous species under climate change and extinction threat levels varied with both plant traits and extrinsic variables. The relationships we uncovered may help identify and protect threatened plant species and the ecosystems that rely on them.  相似文献   
2.
Hepatocellular carcinoma (HCC) is one of the most common malignant tumours worldwide. Given metabolic reprogramming in tumours was a crucial hallmark, several studies have demonstrated its value in the diagnostics and surveillance of malignant tumours. The present study aimed to identify a cluster of metabolism-related genes to construct a prediction model for the prognosis of HCC. Multiple cohorts of HCC cases (466 cases) from public datasets were included in the present analysis. (GEO cohort) After identifying a list of metabolism-related genes associated with prognosis, a risk score based on metabolism-related genes was formulated via the LASSO-Cox and LASSO-pcvl algorithms. According to the risk score, patients were stratified into low- and high-risk groups, and further analysis and validation were accordingly conducted. The results revealed that high-risk patients had a significantly worse 5-year overall survival (OS) than low-risk patients in the GEO cohort. (30.0% vs. 57.8%; hazard ratio [HR], 0.411; 95% confidence interval [95% CI], 0.302–0.651; p < 0.001) This observation was confirmed in the external TCGA-LIHC cohort. (34.5% vs. 54.4%; HR 0.452; 95% CI, 0.299–0.681; p < 0.001) To promote the predictive ability of the model, risk score, age, gender and tumour stage were integrated into a nomogram. According to the results of receiver operating characteristic curves and decision curves analysis, the nomogram score possessed a superior predictive ability than conventional factors, which indicate that the risk score combined with clinicopathological features was able to achieve a robust prediction for OS and improve the individualized clinical decision making of HCC patients. In conclusion, the metabolic genes related to OS were identified and developed a metabolism-based predictive model for HCC. Through a series of bioinformatics and statistical analyses, the predictive ability of the model was approved.  相似文献   
3.
Despite their important roles in host nutrition and metabolism, and potential to cause disease, our knowledge of the fungal community in the mammalian gut is quite limited. To date, diversity and composition of fungi in swine gut still remains unknown. Therefore, the first internal transcribed spacer of fungi in faecal samples from three breeds of pigs (10 pigs for each breed) was sequenced based on an Illumina HiSeq 2500 platform, and the relationship between the fungal community and the concentrations of main short-chain fatty acids (SCFAs) was also analysed. Results indicated that Chenghua (local, higher body fat rate), Yorkshire (foreign, higher lean meat and growth rate) and Tibetan (plateau, stronger disease resistance) pigs harboured distinct fungal community. The Basidiomycota and Ascomycota presented as the two predominant phyla, with Loreleia, Russula and Candida as the top three genera in all samples. Network analysis revealed a total of 35 correlations among different fungal genera, with 27 (77.14%) positive and 8 (22.86%) negative pairwise interactions. Canonical correspondence analysis suggested that fungi in the faeces of pigs were more correlated to the concentration of acetate and butyrate rather than propionate. Spearman’s correlation further showed that Tomentella was positively correlated to both acetate and butyrate, and Loreleia was positively correlated to propionate (P < 0.05), while Nephroma and Taiwanofungus were negatively correlated to acetate and propionate (P < 0.05). These findings expanded our knowledge on the intestinal fungi in pigs with different genotypes and phenotypes, indicating that fungi may play an indispensable role during the metabolism of host and the maintenance of intestinal health. The cross-feeding between fungi and other microorganisms may be crucial during the digestion of dietary carbohydrates and the associated physiological processes, which is worthy to be further studied.  相似文献   
4.
5.
Li  Shasha  Liu  Keke  Yu  Saisai  Jia  Shanshan  Chen  Shuo  Fu  Yuheng  Sun  Feng  Luo  Qiangwei  Wang  Yuejin 《Plant Cell, Tissue and Organ Culture》2020,140(2):389-401
Plant Cell, Tissue and Organ Culture (PCTOC) - The fruit of ‘Dangshansuli’ pear is yellowish green in colour, while that of its mutant ‘Xiusu’ is russet in colour. A...  相似文献   
6.
7.
8.
9.
An extraction technique, dynamic pressurized liquid extraction (DPLE), was proposed to extract the taxanes; including 10-DAB III, Baccatin III, 9-DHB III and paclitaxel, from powdered Taxus canadensis needles. A dual-solvent approach was adopted in which the impurities were firstly removed by extraction with hexane, and the taxanes were subsequently extracted with an appropriate solvent. The performance of chloroform, dichloromethane, and mixtures of methanol/dichloromethane was compared for use as the taxane-extracting solvent, and it was found that solvents containing a higher proportion of methanol had higher extraction capabilities. The effect of temperature on DPLE extraction of the taxanes was also studied, and it was found that higher extraction efficiencies could be realized with increasing temperature up to a threshold of 90°C. Based on a progressive conversion model, a kinetic equation for the extraction process was proposed. This model successfully confirmed that smaller needle powder particle sizes would result in higher extraction rates, which is consistent with the data obtained by experimentation.  相似文献   
10.
He W  Zhao Y  Zhang C  An L  Hu Z  Liu Y  Han L  Bi L  Xie Z  Xue P  Yang F  Hang H 《Nucleic acids research》2008,36(20):6406-6417
Rad9 is conserved from yeast to humans and plays roles in DNA repair (homologous recombination repair, and base-pair excision repair) and cell cycle checkpoint controls. It has not previously been reported whether Rad9 is involved in DNA mismatch repair (MMR). In this study, we have demonstrated that both human and mouse Rad9 interacts physically with the MMR protein MLH1. Disruption of the interaction by a single-point mutation in Rad9 leads to significantly reduced MMR activity. This disruption does not affect S/M checkpoint control and the first round of G2/M checkpoint control, nor does it alter cell sensitivity to UV light, gamma rays or hydroxyurea. Our data indicate that Rad9 is an important factor in MMR and carries out its MMR function specifically through interaction with MLH1.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号