首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   86篇
  免费   5篇
  2023年   1篇
  2021年   1篇
  2018年   2篇
  2017年   1篇
  2016年   3篇
  2015年   7篇
  2014年   7篇
  2013年   4篇
  2012年   9篇
  2011年   6篇
  2010年   7篇
  2009年   6篇
  2008年   4篇
  2007年   5篇
  2006年   3篇
  2005年   6篇
  2004年   4篇
  2003年   2篇
  2002年   1篇
  2001年   2篇
  1999年   3篇
  1998年   3篇
  1993年   1篇
  1975年   2篇
  1967年   1篇
排序方式: 共有91条查询结果,搜索用时 31 毫秒
1.
PGRP-S (Tag7) is an innate immunity protein involved in the antimicrobial defense systems, both in insects and in mammals. We have previously shown that Tag7 specifically interacts with several proteins, including Hsp70 and the calcium binding protein S100A4 (Mts1), providing a number of novel cellular functions. Here we show that Tag7–Mts1 complex causes chemotactic migration of lymphocytes, with NK cells being a preferred target. Cells of either innate immunity (neutrophils and monocytes) or acquired immunity (CD4+ and CD8+ lymphocytes) can produce this complex, which confirms the close connection between components of the 2 branches of immune response.  相似文献   
2.
Forty-eight intact and eight splenectomized cattle were used to evaluate different systems of coinfectious immunization against Babesia bigemina, Babesia argentina, and Anaplasma marginale. Coinfectious immunity was induced by two methods: (1) blood of cattle acutely infected with B. bigemina, B. argentina and A. marginale was used as the source of inoculum and the post vaccination reactions were chemotherapeutically controlled with Imidocarb, Ganaseg, Gloxazone, and Liquamycin, and (2) by artificially inducing babesiosis with the blood of carrier cattle with chronic infections of B. bigemina and B. argentina without chemotherapy. The degree of resistance was determined by bloodborne and tick-borne challenges. Ticks were collected from cattle and identified as Boophilus microplus and Dermacentor nitens. Vaccinated cattle demonstrated a high degree of resistance to babesiosis and anaplasmosis; however, cattle without coinfectious immunity were treated chemotherapeutically to prevent death losses.  相似文献   
3.
T-type calcium channels in the dorsal root ganglia (DRG) have a central function in tuning neuronal excitability and are implicated in sensory processing including pain. Previous studies have implicated redox agents in control of T-channel activity; however, the mechanisms involved are not completely understood. Here, we recorded T-type calcium currents from acutely dissociated DRG neurons from young rats and investigated the mechanisms of CaV3.2 T-type channel modulation by S-nitrosothiols (SNOs). We found that extracellular application of S-nitrosoglutathione (GSNO) and S-nitroso-N-acetyl-penicillamine rapidly reduced T-type current amplitudes. GSNO did not affect voltage dependence of steady-state inactivation and macroscopic current kinetics of T-type channels. The effects of GSNO were abolished by pretreatment of the cells with N-ethylmaleimide, an irreversible alkylating agent, but not by pretreatment with 1H-(1,2,4) oxadiazolo (4,3-a) quinoxalin-1-one, a specific soluble guanylyl cyclase inhibitor, suggesting a potential effect of GSNO on putative extracellular thiol residues on T-type channels. Expression of wild-type CaV3.2 channels or a quadruple Cys-Ala mutant in human embryonic kidney cells revealed that Cys residues in repeats I and II on the extracellular face of the channel were required for channel inhibition by GSNO. We propose that SNO-related molecules in vivo may lead to alterations of T-type channel-dependent neuronal excitability in sensory neurons and in the central nervous system in both physiological and pathological conditions such as neuronal ischemia/hypoxia.  相似文献   
4.
Human adenovirus E1A makes extensive connections with the cellular protein interaction network. By doing so, E1A can manipulate many cellular programs, including cell cycle progression. Through these reprogramming events, E1A functions as a growth-promoting oncogene and has been used extensively to investigate mechanisms contributing to oncogenesis. Nevertheless, it remains unclear how the C-terminal region of E1A contributes to oncogenic transformation. Although this region is required for transformation in cooperation with E1B, it paradoxically suppresses transformation in cooperation with activated Ras. Previous analysis has suggested that the interaction of E1A with CtBP plays a pivotal role in both activities. However, some C-terminal mutants of E1A retain CtBP binding and yet exhibit defects in transformation, suggesting that other targets of this region are also necessary. To explore the roles of these additional factors, we performed an extensive mutational analysis of the C terminus of E1A. We identified key residues that are specifically required for binding all known targets of the C terminus of E1A. We further tested each mutant for the ability to both localize to the nucleus and transform primary rat cells in cooperation with E1B-55K or Ras. Interaction of E1A with importin α3/Qip1, dual-specificity tyrosine-regulated kinase 1A (DYRK1A), HAN11, and CtBP influenced transformation with E1B-55K. Interestingly, the interaction of E1A with DYRK1A and HAN11 appeared to play a role in suppression of transformation by activated Ras whereas interaction with CtBP was not necessary. This unexpected result suggests a need for revision of current models and provides new insight into transformation by the C terminus of E1A.  相似文献   
5.
The neural response to a stimulus is influenced by endogenous factors such as expectation and attention. Current research suggests that expectation and attention exert their effects in opposite directions, where expectation decreases neural activity in sensory areas, while attention increases it. However, expectation and attention are usually studied either in isolation or confounded with each other. A recent study suggests that expectation and attention may act jointly on sensory processing, by increasing the neural response to expected events when they are attended, but decreasing it when they are unattended. Here we test this hypothesis in an auditory temporal cueing paradigm using magnetoencephalography in humans. In our study participants attended to, or away from, tones that could arrive at expected or unexpected moments. We found a decrease in auditory beta band synchrony to expected (versus unexpected) tones if they were unattended, but no difference if they were attended. Modulations in beta power were already evident prior to the expected onset times of the tones. These findings suggest that expectation and attention jointly modulate sensory processing.  相似文献   
6.
L-cysteine (L-cys) increases the amplitude of T-type Ca2+ currents in rat T-rich nociceptor-like dorsal root ganglia neurons. The modulation of T-type Ca2+ channel gating by L-cys was studied by fitting Markov state models to whole-cell currents recorded from T-rich neurons. The best fitting model tested included three resting states and inactivation from the second resting state and the open state. Inactivation and the final opening step were voltage-independent, whereas transitions between the resting states and deactivation were voltage-dependent. The transition rates between the first two resting states were an order of magnitude faster than those between the second and third resting states, and the voltage-dependency of forward transitions through resting states was two to three times greater than for analogous backward transitions. Analysis with the best fitting model suggested that L-cys increases current amplitude mainly by increasing the transition rate from resting to open and decreasing the transition rate from open to inactivated. An additional model was developed that could account for the bi-exponential time course of recovery from inactivation of the currents and the high frequency of blank sweeps in single channel recordings. This model detected basically the same effects of L-cys on channel gating as the best fitting model.  相似文献   
7.
8.
A novel multidomain metalloprotein from Campylobacter jejuni was overexpressed in Escherichia coli, purified, and extensively characterized. This protein is isolated as a homotetramer of 24-kDa monomers. According to the amino acid sequence, each monomer was predicted to contain three structural domains: an N-terminal desulforedoxin-like domain, followed by a four-helix bundle domain harboring a non-sulfur μ-oxo diiron center, and a rubredoxin-like domain at the C-terminus. The three predicted iron sites were shown to be present and were studied by a combination of UV–vis, EPR, and resonance Raman spectroscopies, which allowed the determination of the electronic and redox properties of each site. The protein contains two FeCys4 centers with reduction potentials of +240 mV (desulforedoxin-like center) and +185 mV (rubredoxin-like center). These centers are in the high-spin configuration in the as-isolated ferric form. The protein further accommodates a μ-oxo-bridged diiron site with reduction potentials of +270 and +235 mV for the two sequential redox transitions. The protein is rapidly reoxidized by hydrogen peroxide and has a significant NADH-linked hydrogen peroxide reductase activity of 1.8 μmol H2O2 min−1 mg−1. Owing to its building blocks and its homology to the rubrerythrin family, the protein is named desulforubrerythrin. It represents a novel example of the large diversity of the organization of domains exhibited by this enzyme family.  相似文献   
9.
10.
Traumatic brain injury (TBI) is a widespread cause of death and a major source of adult disability. Subsequent pathological events occurring in the brain after TBI, referred to as secondary injury, continue to damage surrounding tissue resulting in substantial neuronal loss. One of the hallmarks of the secondary injury process is microglial activation resulting in increased cytokine production. Notwithstanding that recent studies demonstrated that caloric restriction (CR) lasting several months prior to an acute TBI exhibits neuroprotective properties, understanding how exactly CR influences secondary injury is still unclear. The goal of the present study was to examine whether CR (50% of daily food intake for 3 months) alleviates the effects of secondary injury on neuronal loss following cortical stab injury (CSI). To this end, we examined the effects of CR on the microglial activation, tumor necrosis factor-α (TNF-α) and caspase-3 expression in the ipsilateral (injured) cortex of the adult rats during the recovery period (from 2 to 28 days) after injury. Our results demonstrate that CR prior to CSI suppresses microglial activation, induction of TNF-α and caspase-3, as well as neurodegeneration following injury. These results indicate that CR strongly attenuates the effects of secondary injury, thus suggesting that CR may increase the successful outcome following TBI.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号