首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 50 毫秒
1.
Animals are not passive spectators of the sensory world in which they live. In natural conditions they often sense objects on the bases of expectations initiated by predictive cues. Expectation profoundly modulates neural activity by altering the background state of cortical networks and modulating sensory processing. The link between these two effects is not known. Here, we studied how cue-triggered expectation of stimulus availability influences processing of sensory stimuli in the gustatory cortex (GC). We found that expected tastants were coded more rapidly than unexpected stimuli. The faster onset of sensory coding related to anticipatory priming of GC by associative auditory cues. Simultaneous recordings and pharmacological manipulations of GC and basolateral amygdala revealed the role of top-down inputs in mediating the effects of anticipatory cues. Altogether, these data provide a model for how cue-triggered expectation changes the state of sensory cortices to achieve rapid processing of natural stimuli.  相似文献   

2.
Selectively attending to task-relevant sounds whilst ignoring background noise is one of the most amazing feats performed by the human brain. Here, we studied the underlying neural mechanisms by recording magnetoencephalographic (MEG) responses of 14 healthy human subjects while they performed a near-threshold auditory discrimination task vs. a visual control task of similar difficulty. The auditory stimuli consisted of notch-filtered continuous noise masker sounds, and of 1020-Hz target tones occasionally () replacing 1000-Hz standard tones of 300-ms duration that were embedded at the center of the notches, the widths of which were parametrically varied. As a control for masker effects, tone-evoked responses were additionally recorded without masker sound. Selective attention to tones significantly increased the amplitude of the onset M100 response at 100 ms to the standard tones during presence of the masker sounds especially with notches narrower than the critical band. Further, attention modulated sustained response most clearly at 300–400 ms time range from sound onset, with narrower notches than in case of the M100, thus selectively reducing the masker-induced suppression of the tone-evoked response. Our results show evidence of a multiple-stage filtering mechanism of sensory input in the human auditory cortex: 1) one at early (100 ms) latencies bilaterally in posterior parts of the secondary auditory areas, and 2) adaptive filtering of attended sounds from task-irrelevant background masker at longer latency (300 ms) in more medial auditory cortical regions, predominantly in the left hemisphere, enhancing processing of near-threshold sounds.  相似文献   

3.

Background  

Processing stimuli in one sensory modality is known to result in suppression of other sensory-specific cortices. Additionally, behavioral experiments suggest that the primary consequence of paying attention to a specific sensory modality is poorer task performance in the unattended sensory modality. This study was designed to determine how focusing attention on the auditory or visual modality impacts neural activity in cortical regions responsible for processing stimuli in the unattended modality.  相似文献   

4.
Stimulus expectation can modulate neural responses in early sensory cortical regions, with expected stimuli often leading to a reduced neural response. However, it is unclear whether this expectation suppression is an automatic phenomenon or is instead dependent on the type of task a subject is engaged in. To investigate this, human subjects were presented with visual grating stimuli in the periphery that were either predictable or non-predictable while they performed three tasks that differently engaged cognitive resources. In two of the tasks, the predictable stimulus was task-irrelevant and spatial attention was engaged at fixation, with a high load on either perceptual or working memory resources. In the third task, the predictable stimulus was task-relevant, and therefore spatially attended. We observed that expectation suppression is dependent on the cognitive resources engaged by a subjects’ current task. When the grating was task-irrelevant, expectation suppression for predictable items was visible in retinotopically specific areas of early visual cortex (V1-V3) during the perceptual task, but it was abolished when working memory was loaded. When the grating was task-relevant and spatially attended, there was no significant effect of expectation in early visual cortex. These results suggest that expectation suppression is not an automatic phenomenon, but dependent on attentional state and type of available cognitive resources.  相似文献   

5.
Both physiological and behavioral studies have suggested that stimulus-driven neural activity in the sensory pathways can be modulated in amplitude during selective attention. Recordings of event-related brain potentials indicate that such sensory gain control or amplification processes play an important role in visual-spatial attention. Combined event-related brain potential and neuroimaging experiments provide strong evidence that attentional gain control operates at an early stage of visual processing in extrastriate cortical areas. These data support early selection theories of attention and provide a basis for distinguishing between separate mechanisms of attentional suppression (of unattended inputs) and attentional facilitation (of attended inputs).  相似文献   

6.
Attention and the detectability of weak taste stimuli   总被引:2,自引:1,他引:1  
Marks  LE; Wheeler  ME 《Chemical senses》1998,23(1):19-29
Subjects detected weak solutions of sucrose or citric acid under conditions in which attention was directed toward one of the tastants or the other. Detection thresholds were measured using an adaptive, forced-choice procedure, with a three-down one-up rule, which computer simulations suggest should be more reliable than the popular two-down one-up rule. The thresholds were modestly but systematically lower for attended tastants than for unattended ones. Similar results have been reported in other sense modalities, including vision (greater sensitivity to stimuli presented to attended versus unattended spatial locations) and hearing (greater sensitivity to stimuli presented at attended versus unattended sound frequencies). Taken together, the findings are consistent with a general hypothesis regarding attention in sensory systems: gains or losses in detectability occur when a central attentional mechanism (or, conceivably, a preattentive mechanism) selectively and preferentially monitors signals arising from particular subsets of peripheral neural inputs.   相似文献   

7.
Male adults were tested in a dichotic listening task, providing electrophysiological measures of selective attention. Subjects were tested twice, 60 min after oral administration of either 40 mg of ACTH 4-9 analog, or placebo. Averaged auditory evoked potentials (AEPs) to tone pips when attended and when unattended, EEG spectra, heart rate and blood pressure, and behavioral performance were measured during task performance. ACTH 4-9 analog treatment impaired selective attention as indicated a) by a diminished difference between evoked potential waveforms to attended and to unattended tone pips, b) by an impaired behavioral signal detection performance. Furthermore, frontal EEG theta activity slowed down after ACTH 4-9 analog. With time on task, however, there was no decay, but an improvement of selective attention after peptide administration. Differences in attention could not be due to concurrent changes in general cortical and autonomic arousal as indicated by EEG alpha activity, blood pressure and heart rate. Since separate analyses of the AEPs revealed an increased processing of the unattended tone pips in the ACTH 4-9 analog sessions the impaired selective attention under ACTH 4-9 analog may be described as an inability to suppress processing of irrelevant or distracting stimuli.  相似文献   

8.
The dark side of visual attention   总被引:5,自引:0,他引:5  
The limited capacity of neural processing restricts the number of objects and locations that can be attended to. Selected events are readily enhanced: the bright side of attention. However, such focal processing comes at a cost, namely, functional blindness for unattended events: the dark side of visual attention. Recent work has advanced our understanding of the neural mechanisms that facilitate visual processing, as well as the neural correlates of unattended, unconscious visual events. Also, new results have revealed how attentional deployment is optimized by non-visual factors such as behavioral set, past experience, and emotional salience.  相似文献   

9.
When subjects direct attention to a particular location in a visual scene, responses in the visual cortex to stimuli presented at that location are enhanced, and the suppressive influences of nearby distractors are reduced. What is the top-down signal that modulates the response to an attended versus an unattended stimulus? Here, we demonstrate increased activity related to attention in the absence of visual stimulation in extrastriate cortex when subjects covertly directed attention to a peripheral location expecting the onset of visual stimuli. Frontal and parietal areas showed a stronger signal increase during this expectation than did visual areas. The increased activity in visual cortex in the absence of visual stimulation may reflect a top-down bias of neural signals in favor of the attended location, which derives from a fronto-parietal network.  相似文献   

10.
Liu T  Larsson J  Carrasco M 《Neuron》2007,55(2):313-323
How does feature-based attention modulate neural responses? We used adaptation to quantify the effect of feature-based attention on orientation-selective responses in human visual cortex. Observers were adapted to two superimposed oblique gratings while attending to one grating only. We measured the magnitude of attention-induced orientation-selective adaptation both psychophysically, by the behavioral tilt aftereffect, and physiologically, using fMRI response adaptation. We found evidence for orientation-selective attentional modulation of neuronal responses-a lower fMRI response for the attended than the unattended orientation-in multiple visual areas, and a significant correlation between the magnitude of the tilt aftereffect and that of fMRI response adaptation in V1, the earliest site of orientation coding. These results show that feature-based attention can selectively increase the response of neuronal subpopulations that prefer the attended feature, even when the attended and unattended features are coded in the same visual areas and share the same retinotopic location.  相似文献   

11.
This article reviews the nature of the neural code in non-human primate cortex and assesses the potential for neurons to carry two or more signals simultaneously. Neurophysiological recordings from visual and motor systems indicate that the evidence for a role for precisely timed spikes relative to other spike times (ca. 1-10 ms resolution) is inconclusive. This indicates that the visual system does not carry a signal that identifies whether the responses were elicited when the stimulus was attended or not. Simulations show that the absence of such a signal reduces, but does not eliminate, the increased discrimination between stimuli that are attended compared with when the stimuli are unattended. The increased accuracy asymptotes with increased gain control, indicating limited benefit from increasing attention. The absence of a signal identifying the attentional state under which stimuli were viewed can produce the greatest discrimination between attended and unattended stimuli. Furthermore, the greatest reduction in discrimination errors occurs for a limited range of gain control, again indicating that attention effects are limited. By contrast to precisely timed patterns of spikes where the timing is relative to other spikes, response latency provides a fine temporal resolution signal (ca. 10 ms resolution) that carries information that is unavailable from coarse temporal response measures. Changes in response latency and changes in response magnitude can give rise to different predictions for the patterns of reaction times. The predictions are verified, and it is shown that the standard method for distinguishing executive and slave processes is only valid if the representations of interest, as evidenced by the neural code, are known. Overall, the data indicate that the signalling evident in neural signals is restricted to the spike count and the precise times of spikes relative to stimulus onset (response latency). These coding issues have implications for our understanding of cognitive models of attention and the roles of executive and slave systems.  相似文献   

12.
Wang XD  Gu F  He K  Chen LH  Chen L 《PloS one》2012,7(1):e30027

Background

Extraction of linguistically relevant auditory features is critical for speech comprehension in complex auditory environments, in which the relationships between acoustic stimuli are often abstract and constant while the stimuli per se are varying. These relationships are referred to as the abstract auditory rule in speech and have been investigated for their underlying neural mechanisms at an attentive stage. However, the issue of whether or not there is a sensory intelligence that enables one to automatically encode abstract auditory rules in speech at a preattentive stage has not yet been thoroughly addressed.

Methodology/Principal Findings

We chose Chinese lexical tones for the current study because they help to define word meaning and hence facilitate the fabrication of an abstract auditory rule in a speech sound stream. We continuously presented native Chinese speakers with Chinese vowels differing in formant, intensity, and level of pitch to construct a complex and varying auditory stream. In this stream, most of the sounds shared flat lexical tones to form an embedded abstract auditory rule. Occasionally the rule was randomly violated by those with a rising or falling lexical tone. The results showed that the violation of the abstract auditory rule of lexical tones evoked a robust preattentive auditory response, as revealed by whole-head electrical recordings of the mismatch negativity (MMN), though none of the subjects acquired explicit knowledge of the rule or became aware of the violation.

Conclusions/Significance

Our results demonstrate that there is an auditory sensory intelligence in the perception of Chinese lexical tones. The existence of this intelligence suggests that the humans can automatically extract abstract auditory rules in speech at a preattentive stage to ensure speech communication in complex and noisy auditory environments without drawing on conscious resources.  相似文献   

13.
Given the limited processing capabilities of the sensory system, it is essential that attended information is gated to downstream areas, whereas unattended information is blocked. While it has been proposed that alpha band (8–13 Hz) activity serves to route information to downstream regions by inhibiting neuronal processing in task-irrelevant regions, this hypothesis remains untested. Here we investigate how neuronal oscillations detected by electroencephalography in visual areas during working memory encoding serve to gate information reflected in the simultaneously recorded blood-oxygenation-level-dependent (BOLD) signals recorded by functional magnetic resonance imaging in downstream ventral regions. We used a paradigm in which 16 participants were presented with faces and landscapes in the right and left hemifields; one hemifield was attended and the other unattended. We observed that decreased alpha power contralateral to the attended object predicted the BOLD signal representing the attended object in ventral object-selective regions. Furthermore, increased alpha power ipsilateral to the attended object predicted a decrease in the BOLD signal representing the unattended object. We also found that the BOLD signal in the dorsal attention network inversely correlated with visual alpha power. This is the first demonstration, to our knowledge, that oscillations in the alpha band are implicated in the gating of information from the visual cortex to the ventral stream, as reflected in the representationally specific BOLD signal. This link of sensory alpha to downstream activity provides a neurophysiological substrate for the mechanism of selective attention during stimulus processing, which not only boosts the attended information but also suppresses distraction. Although previous studies have shown a relation between the BOLD signal from the dorsal attention network and the alpha band at rest, we demonstrate such a relation during a visuospatial task, indicating that the dorsal attention network exercises top-down control of visual alpha activity.  相似文献   

14.
Rhythm is important in the production of motor sequences such as speech and song. Deficits in rhythm processing have been implicated in human disorders that affect speech and language processing, including stuttering, autism, and dyslexia. Songbirds provide a tractable model for studying the neural underpinnings of rhythm processing due to parallels with humans in neural structures and vocal learning patterns. In this study, adult zebra finches were exposed to naturally rhythmic conspecific song or arrhythmic song. Immunohistochemistry for the immediate early gene ZENK was used to detect neural activation in response to these two types of stimuli. ZENK was increased in response to arrhythmic song in the auditory association cortex homologs, caudomedial nidopallium (NCM) and caudomedial mesopallium (CMM), and the avian amygdala, nucleus taeniae (Tn). CMM also had greater ZENK labeling in females than males. The increased neural activity in NCM and CMM during perception of arrhythmic stimuli parallels increased activity in the human auditory cortex following exposure to unexpected, or perturbed, auditory stimuli. These auditory areas may be detecting errors in arrhythmic song when comparing it to a stored template of how conspecific song is expected to sound. CMM may also be important for females in evaluating songs of potential mates. In the context of other research in songbirds, we suggest that the increased activity in Tn may be related to the value of song for assessing mate choice and bonding or it may be related to perception of arrhythmic song as aversive.  相似文献   

15.
Seol J  Oh M  Kim JS  Jin SH  Kim SI  Chung CK 《PloS one》2011,6(9):e24959

Background

The issue of how differences in timbre are represented in the neural response still has not been well addressed, particularly with regard to the relevant brain mechanisms. Here we employ phasing and clipping of tones to produce auditory stimuli differing to describe the multidimensional nature of timbre. We investigated the auditory response and sensory gating as well, using by magnetoencephalography (MEG).

Methodology/Principal Findings

Thirty-five healthy subjects without hearing deficit participated in the experiments. Two different or same tones in timbre were presented through conditioning (S1) – testing (S2) paradigm as a pair with an interval of 500 ms. As a result, the magnitudes of auditory M50 and M100 responses were different with timbre in both hemispheres. This result might support that timbre, at least by phasing and clipping, is discriminated in the auditory early processing. The second response in a pair affected by S1 in the consecutive stimuli occurred in M100 of the left hemisphere, whereas both M50 and M100 responses to S2 only in the right hemisphere reflected whether two stimuli in a pair were the same or not. Both M50 and M100 magnitudes were different with the presenting order (S1 vs. S2) for both same and different conditions in the both hemispheres.

Conclusions/Significances

Our results demonstrate that the auditory response depends on timbre characteristics. Moreover, it was revealed that the auditory sensory gating is determined not by the stimulus that directly evokes the response, but rather by whether or not the two stimuli are identical in timbre.  相似文献   

16.
Whereas extensive neuroscientific and behavioral evidence has confirmed a role of auditory-visual integration in representing space [1-6], little is known about the role of auditory-visual integration in object perception. Although recent neuroimaging results suggest integrated auditory-visual object representations [7-11], substantiating behavioral evidence has been lacking. We demonstrated auditory-visual integration in the perception of face gender by using pure tones that are processed in low-level auditory brain areas and that lack the spectral components that characterize human vocalization. When androgynous faces were presented together with pure tones in the male fundamental-speaking-frequency range, faces were more likely to be judged as male, whereas when faces were presented with pure tones in the female fundamental-speaking-frequency range, they were more likely to be judged as female. Importantly, when participants were explicitly asked to attribute gender to these pure tones, their judgments were primarily based on relative pitch and were uncorrelated with the male and female fundamental-speaking-frequency ranges. This perceptual dissociation of absolute-frequency-based crossmodal-integration effects from relative-pitch-based explicit perception of the tones provides evidence for a sensory integration of auditory and visual signals in representing human gender. This integration probably develops because of concurrent neural processing of visual and auditory features of gender.  相似文献   

17.
Chen Y  Seidemann E 《Neuron》2012,74(3):557-566
Attention can modulate neural responses in sensory cortical areas and improve behavioral performance in perceptual tasks. However, the nature and purpose of these modulations remain under debate. Here we?used voltage-sensitive dye imaging (VSDI) to measure V1 population responses while monkeys performed a difficult detection task under focal or distributed attention. We found that V1 responses at attended locations are significantly elevated relative to actively ignored or irrelevant locations, consistent with the hypothesis that an important goal of attention in V1 is to highlight task-relevant information. Surprisingly, these modulations were indistinguishable under focal and distributed attention, suggesting a minor or no role for attention as a mechanism for allocating limited representational resources in V1. The response elevation at attended locations is additive, is widespread, and starts shortly before stimulus onset. This elevation could contribute to spatial gating by biasing competition in subsequent processing stages in favor of attended stimuli.  相似文献   

18.
A presently unresolved question within the face perception literature is whether attending to the location of a face modulates face processing (i.e. spatial attention). Opinions on this matter diverge along methodological lines – where neuroimaging studies have observed that the allocation of spatial attention serves to enhance the neural response to a face, findings from behavioural paradigms suggest face processing is carried out independently of spatial attention. In the present study, we reconcile this divide by using a continuous behavioural response measure that indexes face processing at a temporal resolution not available in discrete behavioural measures (e.g. button press). Using reaching trajectories as our response measure, we observed that although participants were able to process faces both when attended and unattended (as others have found), face processing was not impervious to attentional modulation. Attending to the face conferred clear benefits on sex-classification processes at less than 350ms of stimulus processing time. These findings constitute the first reliable demonstration of the modulatory effects of both spatial and temporal attention on face processing within a behavioural paradigm.  相似文献   

19.
Participants were requested to respond to a sequence of visual targets while listening to a well-known lullaby. One of the notes in the lullaby was occasionally exchanged with a pattern deviant. Experiment 1 found that deviants capture attention as a function of the pitch difference between the deviant and the replaced/expected tone. However, when the pitch difference between the expected tone and the deviant tone is held constant, a violation to the direction-of-pitch change across tones can also capture attention (Experiment 2). Moreover, in more complex auditory environments, wherein it is difficult to build a coherent neural model of the sound environment from which expectations are formed, deviations can capture attention but it appears to matter less whether this is a violation from a specific stimulus or a violation of the current direction-of-change (Experiment 3). The results support the expectation violation account of auditory distraction and suggest that there are at least two different expectations that can be violated: One appears to be bound to a specific stimulus and the other would seem to be bound to a more global cross-stimulus rule such as the direction-of-change based on a sequence of preceding sound events. Factors like base-rate probability of tones within the sound environment might become the driving mechanism of attentional capture—rather than violated expectations—in complex sound environments.  相似文献   

20.
Mismatch negativity of ERP in cross-modal attention   总被引:1,自引:0,他引:1  
Event-related potentials were measured in 12 healthy youth subjects aged 19-22 using the paradigm "cross-modal and delayed response" which is able to improve unattended purity and to avoid the effect of task target on the deviant components of ERP. The experiment included two conditions: (i) Attend visual modality, ignore auditory modality; (ii) attend auditory modality, ignore visual modality. The stimuli under the two conditions were the same. The difference wave was obtained by subtracting ERPs of the standard stimuli from that of the deviant stim-uli. The present results showed that mismatch negativity (MMN), N2b and P3 components can be produced in the auditory and visual modalities under attention condition. However, only MMN was observed in the two modalities un-der inattention condition. Auditory and visual MMN have some features in common: their largest MMN wave peaks were distributed respectively over their primary sensory projection areas of the scalp under attention condition, but over front  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号