首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   43篇
  免费   0篇
  2022年   3篇
  2021年   1篇
  2017年   1篇
  2016年   4篇
  2015年   3篇
  2014年   2篇
  2013年   4篇
  2012年   6篇
  2011年   2篇
  2010年   1篇
  2009年   2篇
  2008年   2篇
  2007年   1篇
  2006年   2篇
  2005年   2篇
  2004年   4篇
  2003年   1篇
  1999年   2篇
排序方式: 共有43条查询结果,搜索用时 203 毫秒
1.
2.
Lactulose and lactitol, non-absorbable disaccharides, prevent bacterial translocation (BT) arising from the gut. In contrast, lack of food into the gut leads to coliform bacterial overgrowth and even if it does not cause BT, can induce the risk from other stimuli for BT. In this study, we tested whether lactulose and lactitol affected populations of coliform bacteria in the caecum during starvation in Sprague-Dawley rats. Three groups of rats were starved for 72 h and given oral 2 ml undiluted lactulose (670 mg/ml), 2 ml undiluted lactitol (666 mg/ml) or 2 ml physiological saline, respectively, once a day. The caecum and mesenteric lymph nodes (MLNs) were removed for microbiological and histopathological analyses. The highest degree of coliform bacterial overgrowth, BT to MLNs and histopathological damage were observed in lactulose-treated rats, followed by the group treated with lactitol. As a result of this study, both drugs, especially lactulose augmented the proliferation and translocation tendency of coliform bacteria in the caecum during 72-h starvation in rats.  相似文献   
3.
4.
The effects of thiamin (Thi) applied as seed soaking or foliar spray on some key physiological parameters were investigated in two differentially salt-responsive maize (Zea mays L.) cultivars, DK 5783 and Apex 836 F1, exposed to saline stress in two different experiments. An initial experiment (germination experiment) was designed to identify appropriate doses of Thi which could lessen the deleterious effects of salt on plants and screen all available maize cultivars for their differential tolerance to salt stress (100 mM NaCl). The seeds of nine maize cultivars were soaked for 24 h in solutions containing six levels of Thi (25, 50, 75, 100, 125 and 150 mg l?1). Based on the results obtained from the germination experiment, maize cultivar DK 5783 was found to be the most salt tolerant and Apex 836 as the most sensitive cultivar. Also, of six Thi levels used, two levels (100 and 125 mg l?1) were chosen for subsequent studies. In the second experiment (glasshouse experiment), two maize cultivars, DK 5783 (salt tolerant) and Apex 836 (salt sensitive) were subjected to saline regime (100 mM NaCl) and two levels of Thi (100 and 125 mg l?1) applied as foliar spray. Salt stress markedly suppressed shoot and root dry mass, total chlorophylls (“a” + “b”), leaf water potential and maximum fluorescence yield (Fv/Fm) in the plants of both maize cultivars, but it increased proline accumulation, leaf osmotic pressure, malondialdehyde (MDA) and hydrogen peroxide (H2O2) concentrations, electrolyte leakage (EL) as well as activities of some key antioxidant enzymes, superoxide dismutase (SOD; EC. 1.15.1.1), peroxidase (POD; EC. 1.11.1.7) and catalase (CAT; EC. 1.11.1.6). Salt-induced reduction in plant growth parameters was higher in the salt-sensitive cultivar, Apex 836, which was found to be associated with relatively increased EL, and MDA and H2O2 levels, and decreased activities of the key antioxidant enzymes. Application of Thi as seed soaking or foliar spray partly mitigated the deleterious effects of salinity on plants of both maize cultivars. The most promising effect of Thi on alleviation of adverse effects of salt stress on maize plants was found when it was applied as foliar spray at 100 mg l?1. Thiamin application considerably reduced tissue Na+ concentration, but improved those of N, P, Ca2+ and K+ in the salt-stressed maize plants. Exogenously applied thiamin-induced growth improvement in maize plants was found to be associated with reduced membrane permeability, MDA and H2O2 levels, and altered activities of some key antioxidant enzymes such as CAT, SOD and POD as well as increased photosynthetic pigment concentration under saline regime.  相似文献   
5.
6.
We evaluated the presence of estrogen (ER) and progesterone (PR) receptors, and matrix metalloproteinase-2 (MMP-2) and matrix metalloproteinase-9 (MMP-9) enzymes in 18 feline mammary tubulopapillary carcinomas. Immunohistochemistry was performed to localize ER, PR, MMP-2 and MMP-9 in situ. Western blotting and zymographic analyses also were performed to investigate the presence and activities of MMP-2 and MMP-9 enzymes in fresh tissue homogenates. ER immune expression was detected in five samples (27.7%) and PR was positive in sixteen (88.8%) samples. Diffuse cytoplasmic staining of MMP-2 and MMP-9 in neoplastic mammary epithelial cells, stromal fibroblasts and inflammatory cell was evident. MMP-2 and MMP-9 staining was observed also in metastasizing neoplastic cells within lymphatic vessels. MMP-2 and MMP-9 enzymes and their activities in fresh tumor homogenates were demonstrated by zymography. Comparison of MMP-9 gelatinolytic bands from tumor samples and controls revealed a statistically significant difference. We demonstrated elevated MMP-9 and MMP-2 levels in tumor samples by Western blotting; analysis of protein bands revealed 1.9-to-3 fold increase in MMP-9 in tumor samples and the difference was statistically significant. Our results suggest that the expression of MMP-9 can be an important indicator for tumor progression and the possible metastatic nature of feline tubulopapillary carcinomas.  相似文献   
7.
8.
9.
Nitric oxide (NO) plays a significant role in the development of diabetic nephropathy. We investigated the effects of an antioxidant, carnosine, on streptozotocin (STZ)-induced renal injury in diabetic rats. We used four groups of eight rats: group 1, control; group 2, carnosine treated; group 3, untreated diabetic; group 4, carnosine treated diabetic. Kidneys were removed and processed, and sections were stained with periodic acid-Schiff (PAS) and subjected to eNOS immunohistochemistry. Examination by light microscopy revealed degenerated glomeruli, thickened basement membrane and glycogen accumulation in the tubules of diabetic kidneys. Carnosine treatment prevented the renal morphological damage caused by diabetes. Moreover, administration of carnosine decreased somewhat the oxidative damage of diabetic nephropathy. Appropriate doses of carnosine might be a useful therapeutic option to reduce oxidative stress and associated renal injury in diabetes mellitus.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号