首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Early oxidative stress in the diabetic kidney: effect of DL-alpha-lipoic acid   总被引:10,自引:0,他引:10  
Oxidative stress is implicated in the pathogenesis of diabetic nephropathy. The attempts to identify early markers of diabetes-induced renal oxidative injury resulted in contradictory findings. We characterized early oxidative stress in renal cortex of diabetic rats, and evaluated whether it can be prevented by the potent antioxidant, DL-alpha-lipoic acid. The experiments were performed on control rats and streptozotocin-diabetic rats treated with/without DL-alpha-lipoic acid (100 mg/kg i.p., for 3 weeks from induction of diabetes). Malondialdehyde plus 4-hydroxyalkenal concentration was increased in diabetic rats vs. controls (p <.01) and this increase was partially prevented by DL-alpha-lipoic acid. F(2) isoprostane concentrations (measured by GCMS) expressed per either mg protein or arachidonic acid content were not different in control and diabetic rats but were decreased several-fold with DL-alpha-lipoic acid treatment. Both GSH and ascorbate (AA) levels were decreased and GSSG/GSH and dehydroascorbate/AA ratios increased in diabetic rats vs. controls (p <.01 for all comparisons), and these changes were completely or partially (AA) prevented by DL-alpha-lipoic acid. Superoxide dismutase, glutathione peroxidase, glutathione reductase, glutathione transferase, and NADH oxidase, but not catalase, were upregulated in diabetic rats vs. controls, and these activities, except glutathione peroxidase, were decreased by DL-alpha-lipoic acid. In conclusion, enhanced oxidative stress is present in rat renal cortex in early diabetes, and is prevented by DL-alpha-lipoic acid.  相似文献   

2.
Our first aim was to determine the effects of secreted clusterin (sCLU) and nuclear clusterin (nCLU) in diabetic nephropathy. We also aimed to investigate the post-effects of angiotensin II blockage treatment on clusterin expression and to compare these with apoptosis. Five groups of Wistar albino rats were used: First group consisted of healthy controls; the second group included the untreated STZ-diabetics; 30 days of irbesartan or perindopril treated STZ-diabetics formed the third and the fourth groups, respectively; while the subjects receiving a combined treatment with irbesartan and perindopril for 30 days consisted the fifth group. TUNEL method for apoptosis and immunohistochemical staining for TGF-β1, α-SMA, clusterin-β and clusterin-α/β antibodies were performed. Apoptotic cells especially increased in the kidney tubuli of untreated diabetic group and on the contrary, a significant decrease was observed in the group that received a combined drug treatment. While sCLU was increased in the glomeruli and tubuli of the untreated diabetic group, it was decreased in all the treated groups. An increase in the nCLU immunoreactivity was observed in the podocytes, mesangial cells, and the injured tubule cells of the untreated diabetic group. nCLU immunopositive cells were decreased in all treated diabetic groups. In addition to this, the distribution of nCLU was similar to the distribution of apoptotic cells in the diabetic groups. Our results indicate that sCLU expression in diabetic nephropathy was induced due to renal tissue damage, and the nCLU expression increase in renal tubuli was related to apoptosis. Although irbesartan and perindopril prevented further renal injury in diabetes, a combined application of low-dose ACEI and AT1R blockers revealed more efficient measures, by means of renal damage prevention.  相似文献   

3.
Diabetic nephropathy is both a common and a severe complication of diabetes mellitus. Iron is an essential trace element. However, excess iron is toxic, playing a role in the pathogenesis of diabetic nephropathy. The present study aimed to determine the extent of the interaction between iron and type 2 diabetes in the kidney. Male rats were randomly assigned into four groups: control, iron (300-mg/kg iron dextran), diabetes (a single dose of intraperitoneal streptozotocin), and iron + diabetes group. Iron supplementation resulted in a higher liver iron content, and diabetic rats showed higher serum glucose compared with control rats, which confirmed the model as iron overload and diabetic. It was found that iron + diabetes group showed a greater degree of kidney pathological changes, a remarkable reduction in body weight, and a significant increase in relative kidney weight and iron accumulation in rat kidneys compared with iron or diabetes group. Moreover, malondialdehyde values in the kidney were higher in iron + diabetes group than in iron or diabetes group, sulfhydryl concentration and glutathione peroxidase activity were decreased by the diabetes and iron + diabetes groups, and protein oxidation and nitration levels were higher in the kidney of iron + diabetes group as compared to iron or diabetes group. However, iron supplementation did not elevate the glucose level of a diabetic further. These results suggested that iron increased the diabetic renal injury probably through increased oxidative/nitrative stress and reduced antioxidant capacity instead of promoting a rise in blood sugar levels; iron might be a potential cofactor of diabetic nephropathy, and strict control of iron would be important under diabetic state.  相似文献   

4.
Oxidative stress is implicated as an important mechanism by which diabetes causes nephropathy. Oxykine is the cantaloupe melon extract rich in vegetal superoxide dismutase covered by polymeric films of wheat matrix gliadin. In this study, we examined whether chronic oral administration of oxykine could prevent the progression of diabetic nephropathy induced by oxidative stress using preclinical rodent model of type 2 diabetes. We used female db/db mice and their non-diabetic db/m littermates. The mice were divided into the following three groups: non-diabetic db/m; diabetic db/db, and diabetic db/db treated with oxykine. Blood glucose level, body weight, urinary albumin, and urinary 8-hydroxydeoxyguanosine (8-OHdG) were measured during the experiments. Histological and 8-OHdG immunohistochemical studies were preformed on 12 weeks from the beginning of treatment. After 12 weeks of treatment, the levels of blood glucose and the body weight were not significantly different between the oxykine-treated group and the non-treated db/db group, however both groups kept significantly high levels rather than db/m mice. The relative mesangial area calculated by mesangial area/total glomerular area ratio was significantly ameliorated in the oxykine treated group compared with non-treated db/db group. The increases in urinary albumin and 8-OHdG at 12 weeks of treatment were significantly inhibited by chronic treatment with oxykine. The 8-OHdG immunoreactive cells in the glomeruli of non-treated db/db mice were more numerous than that of oxykine-treated db/db mice. In this study, treatment of oxykine ameliorated the progression and acceleration of diabetic nephropathy for rodent model of type 2 diabetes. These results indicated that the oxykine reduced the diabetes-induced oxidative stress and renal mesangial cell injury. In conclusion, oxykine might be a novel approach for the prevention of diabetes nephropathy.  相似文献   

5.
Hyperglycemia-induced oxidative stress is widely recognized as a key mediator in the pathogenesis of diabetic nephropathy, a complication of diabetes. We found that both expression and enzymatic activity of cytosolic NADP+-dependent isocitrate dehydrogenase (IDPc) were upregulated in the renal cortexes of diabetic rats and mice. Similarly, IDPc was induced in murine renal proximal tubular OK cells by high hyperglycemia, while it was abrogated by co-treatment with the antioxidant N-Acetyl-Cysteine (NAC). In OK cells, increased expression of IDPc by stable transfection prevented hyperglycemia-mediated reactive oxygen species (ROS) production, subsequent cellular oxidative stress and extracellular matrix accumulation, whereas these processes were all stimulated by decreased IDPc expression. In addition, production of NADPH and GSH in the cytosol was positively correlated with the expression level of IDPc in OK cells. These results together indicate that upregulation of IDPc in response to hyperglycemia might play an essential role in preventing the progression of diabetic nephropathy, which is accompanied by ROS-induced cellular damage and fibrosis, by providing NADPH, the reducing equivalent needed for recycling reduced glutathione and low molecular weight antioxidant thiol proteins.  相似文献   

6.
Elevated glomerular filtration rate (GFR) is a frequent finding in patients with early insulin-dependent diabetes mellitus (IDDM). The mechanisms responsible for this glomerular hyperfiltration in IDDM are unclear. Rats made diabetic with alloxan or streptozotocin, and treated daily with supplemental insulin, have moderate hyperglycemia and elevated GFR, and thus have been used to study mechanisms of glomerular hyperfiltration in diabetes. Renal micropuncture techniques have shown that single-nephron GFR (SNGFR) is elevated in moderately hyperglycemic diabetic rats. In some cases, this is because of elevated glomerular capillary pressure (Pgc), but in other cases, Pgc is normal despite elevated SNGFR. Several potential mediators of increased SNGFR have been examined, including hyperglycemia, increased glomerular prostaglandin production, and decreased sensitivity of the tubuloglomerular feedback mechanism. Renal failure is a common complication of human IDDM. Diabetic rats with long-term moderate hyperglycemia have been used to study the mechanism by which glomerular injury develops in diabetes mellitus. It has been postulated that glomerular hyperfiltration or some determinant of elevated GFR in early diabetes may ultimately cause glomerular damage, leading to a progressive loss of renal function (diabetic nephropathy). Diabetic rats with long-term moderate hyperglycemia, however, do not develop characteristic glomerular lesions of human diabetic nephropathy and, in fact, develop only minimal glomerular injury even after 1 year of diabetes. Thus, although the diabetic rat with moderate hyperglycemia may be useful to study the mechanisms of glomerular hyperfiltration in early diabetes, it may not be an appropriate model of renal failure in IDDM.  相似文献   

7.
BackgroundRenal renin-angiotensin system (RAS) activation is one of the important pathogenic mechanisms in the development of diabetic nephropathy in type 2 diabetes. The aim of this study was to investigate the effects of a sodium-glucose co-transporter 2 (SGLT-2) inhibitor, dapagliflozin, on renal RAS in an animal model with type 2 diabetes.MethodsDapagliflozin (1.0 mg/kg, OL-DA) or voglibose (0.6 mg/kg, OL-VO, diabetic control) (n = 10 each) was administered to Otsuka Long-Evans Tokushima Fatty (OLETF) rats for 12 weeks. We used voglibose, an alpha-glucosidase inhibitor, as a comparable counterpart to SGLT2 inhibitor because of its postprandial glucose-lowering effect without proven renoprotective effects. Control Long-Evans Tokushima Otsuka (LT) and OLETF (OL-C) rats received saline (n = 10, each). Changes in blood glucose, urine albumin, creatinine clearance, and oxidative stress were measured. Inflammatory cell infiltration, mesangial widening, and interstitial fibrosis in the kidney were evaluated by histological analysis. The effects of dapagliflozin on renal expression of the RAS components were evaluated by quantitative RT-PCR in renal tissue.ResultsAfter treatment, hyperglycemia and urine microalbumin levels were attenuated in both OL-DA and OL-VO rather than in the OL-C group (P < 0.05). The urine angiotensin II (Ang II) and angiotensinogen levels were significantly decreased following treatment with dapagliflozin or voglibose, but suppression of urine Ang II level was more prominent in the OL-DA than the OL-VO group (P < 0.05). The expressions of angiotensin type 1 receptor and tissue oxidative stress markers were markedly increased in OL-C rats, which were reversed by dapagliflozin or voglibose (P < 0.05, both). Inflammatory cell infiltration, mesangial widening, interstitial fibrosis, and total collagen content were significantly increased in OL-C rats, which were attenuated in OL-DA group (P < 0.05).ConclusionDapagliflozin treatment showed beneficial effects on diabetic nephropathy, which might be via suppression of renal RAS component expression, oxidative stress and interstitial fibrosis in OLETF rats. We suggest that, in addition to control of hyperglycemia, partial suppression of renal RAS with an SGLT2 inhibitor would be a promising strategy for the prevention of treatment of diabetic nephropathy.  相似文献   

8.
The alleviative effects of two antioxidants, carnosine (Car) and melatonin (Mel), against titanium dioxide nanoparticles (TiO2‐NPs) toxicity‐induced oxidative and inflammatory renal damage were examined in rats. Administration of these antioxidants along with TiO2‐NPs effectively reduced serum urea, uric acid, creatinine, glucose, tumor necrosis factor‐α, interleukin‐6, C‐reactive protein, immunoglobulin G, vascular endothelial growth factor, and nitric oxide, as well as a significant amelioration of the decrease in glutathione levels in renal tissue was observed, compared to those in rats treated with TiO2‐NPs alone. The renoprotective properties of the antioxidants were confirmed by reduced intensity of renal damage as demonstrated by histological findings. In conclusion, Car and Mel play protective roles against TiO2‐NPs‐induced renal inflammation and oxidative injury, likely due to their antioxidant and anti‐inflammatory properties.  相似文献   

9.
《Phytomedicine》2015,22(12):1071-1078
BackgroundRecently, extract of Ginkgo biloba leaves (GbE) have become widely known phytomedicines and have shown various pharmacological activities, including improvement of blood circulation, protection of oxidative cell damage, prevention of Alzheimer's disease, treatment of cardiovascular disease and diabetes complications. This study was designed to investigate the effects of an ethanolic GbE on renal fibrosis in diabetic nephropathy (DN) and to clarify the possible mechanism by which GbE prevents renal fibrosis.Study designWe investigated the protective effects of GbE on renal fibrosis in STZ-induced diabetic rats. Rats were randomized into six groups termed normal control, diabetes mellitus, low dose of GbE (50 mg/kg/d), intermediate dose of GbE (100 mg/kg/d), high dose of GbE (200 mg/kg/d) and rapamycin (1 mg/kg/d).MethodsAfter 12 weeks, the rats were sacrificed and then fasting blood glucose (FBG), creatinine (Cr), blood urea nitrogen (BUN), urine protein, relative kidney weight, glycogen and collagen accumulation, and collagen IV and laminin expression were measured by different methods. The amounts of E-cadherin, α-SMA and snail, as well as the phosphorylation of Akt, mTOR and p70S6K in the renal cortex of rats, were examined by western blotting.ResultsCompared with diabetic rats, the levels of Cr, BUN, urine protein, relative kidney weight, accumulation of glycogen and collagen, and expression of collagen IV and laminin in the renal cortex were all decreased in GbE treated rats. In addition, GbE reduced the expression of E-cadherin, α-SMA, snail and the phosphorylation of Akt, mTOR and p70S6K in diabetic renal cortex.ConclusionGbE can prevent renal fibrosis in rats with diabetic nephropathy, which is most likely to be associated with its abilities to inhibit the Akt/mTOR signaling pathway.  相似文献   

10.
Diabetic nephropathy is one of the most serious complications of diabetes and the major cause of end-stage renal failure. Consequences of diabetic nephropathy include increased kidney size and glomerular volume, thickening of basement membranes and progressive accumulation of extracellular matrix. Reports in the literature support an association between increased secretion of inflammatory molecules, such as cytokines, growth factors and metalloproteinases, and development of diabetic nephropathy. We investigated the potential of granulocyte colony- stimulating factor (G-CSF) as a therapeutic candidate for preventing diabetic nephropathy. We used 21 8-week-old male rats; 14 were administered a single dose of 60 mg/kg streptozotocin (STZ) to induce diabetes. The rats were divided into three groups of seven: group 1, control; group 2, diabetic; group 3, diabetic plus G-CSF treatment. After 4 weeks, immunoexpressions of transforming growth factor β1 (TGF-β1), Akt and CD34 levels were measured in the kidney tissue. Blood glucose, urine protein and the glomerular area also were measured for each group. We found that G-CSF treatment decreased TGF-β1 immunoexpression, urine protein and glomerular area in kidneys of diabetic rats, and increased CD 34 and Akt immunoexpression in kidneys of diabetic rats. The effects of G-CSF were independent of blood glucose levels. G-CSF may be a useful therapeutic agent for preventing diabetic nephropathy.  相似文献   

11.
Zinc deficiency during diabetes projects a role for zinc nutrition in the management of diabetic nephropathy. The current study explored whether zinc supplementation protects against diabetic nephropathy through modulation of kidney oxidative stress and stress-induced expression related to the inflammatory process in streptozotocin-induced diabetic rats. Groups of hyperglycemic rats were exposed to dietary interventions for 6 weeks with zinc supplementation (5 times and 10 times the normal level). Supplemental-zinc-fed diabetic groups showed a significant reversal of increased kidney weight and creatinine clearance. There was a significant reduction in hyperlipidemic condition along with improved PUFA:SFA ratio in the renal tissue. Expression of the lipid oxidative marker and expression of inflammatory markers, cytokines, fibrosis factors and apoptotic regulatory proteins observed in diabetic kidney were beneficially modulated by zinc supplementation, the ameliorative effect being concomitant with elevated antiapoptosis. There was a significant reduction in advanced glycation, expression of the receptor of the glycated products and oxidative stress markers. Zinc supplementation countered the higher activity and expression of polyol pathway enzymes in the kidney. Overexpression of the glucose transporters, as an adaptation to the increased need for glucose transport in diabetic condition, was minimized by zinc treatment. The pathological abnormalities in the renal architecture of diabetic animals were corrected by zinc intervention. Thus, dietary zinc supplementation has a significant beneficial effect in the control of diabetic nephropathy. This was exerted through a protective influence on oxidative-stress-induced cytokines, inflammatory proliferation and consequent renal injury.  相似文献   

12.
《Phytomedicine》2014,21(14):1785-1793
Diabetic nephropathy is a complex disease that involves increased production of free radicals which is a strong stimulus for the release of pro-inflammatory factors. We evaluated the renal protective effect of kolaviron (KV) – a Garcinia kola seed extract containing a mixture of 5 flavonoids, in diabetes-induced nephrotoxic rats. Male Wistar rats were divided into 4 groups: untreated controls (C); normal rats treated with kolaviron (C + KV); untreated diabetic rats (D); kolaviron treated diabetic rats (D + KV). A single intraperitoneal injection of streptozotocin (STZ, 50 mg/kg) was used for the induction of diabetes. Renal function parameters were estimated in a clinical chemistry analyzer. Markers of oxidative stress in the kidney homogenate were analyzed in a Multiskan Spectrum plate reader and Bio-plex Promagnetic bead-based assays was used for the analysis of inflammatory markers. The effect of kolaviron on diabetes-induced apoptosis was assessed by TUNEL assay. In the diabetic rats, alterations in antioxidant defenses such as an increase in lipid peroxidation, glutathione peroxidase (GPX) activity and a decrease in catalase (CAT) activity, glutathione (GSH) levels and oxygen radical absorbance capacity (ORAC) were observed. There was no difference in superoxide dismutase (SOD) activity. Diabetes induction increased apoptotic cell death and the levels of interleukin (IL)-1β and tumor necrosis factor (TNF)-α with no effect on IL-10. Kolaviron treatment of diabetic rats restored the activities of antioxidant enzymes, reduced lipid peroxidation and increased ORAC and GSH concentration in renal tissues. Kolaviron treatment of diabetic rats also suppressed renal IL-1β. The beneficial effects of kolaviron on diabetes-induced kidney injury may be due to its inhibitory action on oxidative stress, IL-1β production and apoptosis.  相似文献   

13.
Diabetic nephropathy is a major "microvascular" complication of diabetes, differs from other causes of chronic kidney diseases in its predictability, with well-defined functional progression from hyperfiltration to micro- to macroalbuminuria to renal failure. The present study was undertaken to investigate the effect of Asparagus racemosus Willd (Liliaceae) on streptozotocin-induced early diabetic nephropathy. Single i.p injection of streptozotocin (55 mg/kg) was administered to induce early diabetic nephropathy in Wistar rats and thereafter treated orally with ethanolic extract of Asparagus racemosus (EEAR) at a dose level of 100 and 250 mg/kg daily for 4 weeks. The efficacy of extract was compared with diabetic control rats. A. racemosus treatment significantly decreased plasma glucose, creatinine, urea nitrogen, total cholesterol and triglyceride levels. Renal hypertrophy, polyuria, hyperfiltration, microalbuminuria and abnormal changes in the renal tissue as well as oxidative stress were effectively attenuated by EEAR treatment. Basement membrane thickening and mesangial proliferation formation without nodules were seen in diabetic rats, whereas these structural changes were reduced in EEAR treated groups. Results of this study suggested that A. racemosus has beneficial effect in the treatment of diabetic  相似文献   

14.
Oxidative stress is implicated as an important mechanism by which diabetes causes nephropathy. Astaxanthin, which is found as a common pigment in algae, fish, and birds, is a carotenoid with significant potential for antioxidative activity. In this study, we examined whether chronic administration of astaxanthin could prevent the progression of diabetic nephropathy induced by oxidative stress in mice. We used female db/db mice, a rodent model of type 2 diabetes, and their non-diabetic db/m littermates. The mice were divided into three groups as follows: non-diabetic db/m, diabetic db/db, and diabetic db/db treated with astaxanthin. Blood glucose level, body weight, urinary albumin, and urinary 8-hydroxydeoxyguanosine (8-OHdG) were measured during the experiments. Histological and 8-OHdG immunohistochemical studies were performed for 12 weeks from the beginning of treatment. After 12 weeks of treatment, the astaxanthin-treated group showed a lower level of blood glucose compared with the non-treated db/db group; however, both groups had a significantly high level compared with the db/m mice. The relative mesangial area calculated by the mesangial area/total glomerular area ratio was significantly ameliorated in the astaxanthin-treated group compared with the non-treated db/db group. The increases in urinary albumin and 8-OHdG at 12 weeks of treatment were significantly inhibited by chronic treatment with astaxanthin. The 8-OHdG immunoreactive cells in glomeruli of non-treated db/db mice were more numerous than in the astaxanthin-treated db/db mice. In this study, treatment with astaxanthin ameliorated the progression and acceleration of diabetic nephropathy in the rodent model of type 2 diabetes. The results suggested that the antioxidative activity of astaxanthin reduced the oxidative stress on the kidneys and prevented renal cell damage. In conclusion, administration of astaxanthin might be a novel approach for the prevention of diabetes nephropathy.  相似文献   

15.
Recently, we identified an allelic variant of human carnosinase 1 (CN1) that results in increased enzyme activity and is associated with susceptibility for diabetic nephropathy in humans. Investigations in diabetic (db/db) mice showed that carnosine ameliorates glucose metabolism effectively. We now investigated the renal carnosinase metabolism in db/db mice. Kidney CN1 activity increased with age and was significantly higher in diabetic mice compared to controls. Increased CN1 activity did not affect renal carnosine levels, but anserine concentrations were tenfold lower in db/db mice compared to controls (0.24±0.2 vs. 2.28±0.3 nmol/mg protein in controls; p<0.001). Homocarnosine concentrations in kidney tissue were low in both control and db/db mice (below 0.1 nmol/mg protein, p=n.s.). Carnosine treatment for 4 weeks substantially decreased renal CN1 activity in diabetic mice (0.32±0.3 in non-treated db/db vs. 0.05±0.05 μmol/mg/h in treated db/db mice; p<0.01) close to normal activities. Renal anserine concentrations increased significantly (0.24±0.2 in non-treated db/db vs. 5.7±1.2 μmol/mg/h in treated db/db mice; p<0.01), while carnosine concentrations remained unaltered (53±6.4 in non-treated vs. 61±15 nmol/mg protein in treated db/db mice; p=n.s.). Further, carnosine treatment halved proteinuria and reduced vascular permeability to one-fifth in db/db mice. In renal tissue of diabetic mice carnosinase activity is significantly increased and anserine concentrations are significantly reduced compared to controls. Carnosine treatment largely prevents the alterations of renal carnosine metabolism.  相似文献   

16.
Nicorandil is an orally available drug that can act as a nitric oxide donor, an antioxidant, and an ATP-dependent K channel activator. We hypothesized that it may have a beneficial role in treating diabetic nephropathy. We administered nicorandil to a model of advanced diabetic nephropathy (the streptozotocin-induced diabetes in mice lacking endothelial nitric oxide synthase, eNOSKO); controls included diabetic eNOS KO mice without nicorandil and nondiabetic eNOS KO mice treated with either nicorandil or vehicle. Mice were treated for 8 wk. Histology, blood pressure, and renal function were determined. Additional studies involved examining the effects of nicorandil on cultured human podocytes. Here, we found that nicorandil did not affect blood glucose levels, blood pressure, or systemic endothelial function, but significantly reduced proteinuria and glomerular injury (mesangiolysis and glomerulosclerosis). Nicorandil protected against podocyte loss and podocyte oxidative stress. Studies in cultured podocytes showed that nicorandil likely protects against glucose-mediated oxidant stress via the ATP-dependent K channel as opposed to its NO-stimulating effects. In conclusion, nicorandil may be beneficial in diabetic nephropathy by preserving podocyte function. We recommend clinical trials to determine whether nicorandil may benefit diabetic nephropathy or other conditions associated with podocyte dysfunction.  相似文献   

17.
The study has been designed to investigate the effect of benfotiamine and fenofibrate in diabetes-induced experimental vascular endothelial dysfunction (VED) and nephropathy. The single administration of streptozotocin (STZ) (50 mg/kg, i.p.) produced diabetes, which was noted to develop VED and nephropathy in 8 weeks. The diabetes produced VED by attenuating acetylcholine-induced endothelium dependent relaxation, impairing the integrity of vascular endothelium, decreasing serum nitrite/nitrate concentration and increasing serum TBARS and aortic superoxide anion generation. Further, diabetes altered the lipid profile by increasing the serum cholesterol, triglycerides and decreasing the high density lipoprotein. The nephropathy was noted to be developed in the diabetic rat that was assessed in terms of increase in serum creatinine, blood urea, proteinuria, and glomerular damage. The benfotiamine (70 mg/kg, p.o.) and fenofibrate (32 mg/kg, p.o.) or lisinopril (1 mg/kg, p.o., a standard agent) treatments were started in diabetic rats after 1 week of STZ administration and continued for 7 weeks. The treatment with benfotiamine and fenofibrate either alone or in combination attenuated diabetes-induced VED and nephropathy. In addition, the combination of benfotiamine and fenofibrate was noted to be more effective in attenuating the diabetes-induced VED and nephropathy when compared to treatment with either drug alone or lisinopril. Treatment with fenofibrate normalizes the altered lipid profile in diabetic rats, whereas benfotiamine treatment has no effect on lipid alteration in diabetic rats. It may be concluded that diabetes-induced oxidative stress, lipids alteration, and consequent development of VED may be responsible for the induction of nephropathy in diabetic rats. Concurrent administration of benfotiamine and fenofibrate may provide synergistic benefits in preventing the development of diabetes-induced nephropathy by reducing the oxidative stress and lipid alteration, preventing the VED and subsequently improving the renal function.  相似文献   

18.
Diabetic nephropathy is a progressive and generalized vasculopathic condition associated with abnormal angiogenesis. We aim to determine whether changes in renal microvascular (MV) density correlate with and play a role in the progressive deterioration of renal function in diabetes. We hypothesize that MV changes represent the early steps of renal injury that worsen as diabetes progresses, initiating a vicious circle that leads to irreversible renal injury. Male nondiabetic (ND) or streptozotocin-induced diabetic (D) Sprague-Dawley rats were followed for 4 or 12 wk. Renal blood flow and glomerular filtration rate (GFR) were measured by PAH and (125)I-[iothalamate], respectively. Renal MV density was quantified ex vivo using three-dimensional micro computed tomography and JG-12 immunoreactivity. Vascular endothelial growth factor (VEGF) levels (ELISA) and expression of VEGF receptors and factors involved in MV remodeling were quantified in renal tissue by Western blotting. Finally, renal morphology was investigated by histology. Four weeks of diabetes was associated with increased GFR, accompanied by a 34% reduction in renal MV density and augmented renal VEGF levels. However, at 12 wk, while GFR remained similarly elevated, reduction of MV density was more pronounced (75%) and associated with increased MV remodeling, renal fibrosis, but unchanged renal VEGF compared with ND at 12 wk. The damage, loss, and subsequent remodeling of the renal MV architecture in the diabetic kidney may represent the initiating events of progressive renal injury. This study suggests a novel concept of MV disease as an early instigator of diabetic kidney disease that may precede and likely promote the decline in renal function.  相似文献   

19.
目的:探讨人参皂苷Rg3对糖尿病肾病大鼠生化指标及病理改变的影响。方法:30只SD雄性大鼠按随机数字表法分为正常对照组、模型对照组和人参皂甙Rg3组。采用链脲佐菌素建立糖尿病肾病大鼠模型。造模成功后,Rg3治疗组每天以Rg3(0.5mg/kg)灌胃,余予以等量蒸馏水灌胃。30天后分别测3组大鼠血糖、24小时尿蛋白、血肌酐,并予以HE染色行肾组织活检。结果:与正常组比较,模型对照组大鼠血糖、24小时尿蛋白、血肌酐明显升高,肾小球体积增大,基底膜增厚、细膜基质增多,肾小球内炎细胞浸润(P0.01)。与模型对照组比较,人参皂甙Rg3组血糖、24小时尿蛋白、血肌酐明显降低,肾小球基底膜增厚程度减轻,细胞外基质堆积减少,差异具有显著性(P0.05)。结论:人参皂甙Rg3能显著降低糖尿病大鼠血糖、血肌酐、24 h尿蛋白,能改善其肾脏的病理损害。  相似文献   

20.
Induction of hemeoxygenase-1 (HO-1) lowers blood pressure and reduces organ damage in hypertensive animal models; however, a potential protective role for HO-1 induction against diabetic-induced glomerular injury remains unclear. We hypothesize that HO-1 induction will protect against diabetes-induced glomerular injury by maintaining glomerular integrity and inhibiting renal apoptosis, inflammation, and oxidative stress. Diabetes was induced with streptozotocin in spontaneously hypertensive rats (SHR) as a model where the coexistence of hypertension and diabetes aggravates the progression of diabetic renal injury. Control and diabetic SHR were randomized to receive vehicle or the HO-1 inducer cobalt protoporphyrin (CoPP). Glomerular albumin permeability was significantly greater in diabetic SHR compared with control, consistent with an increase in apoptosis and decreased glomerular nephrin and α(3)β(1)-integrin protein expression in diabetic SHR. CoPP significantly reduced albumin permeability and apoptosis and restored nephrin and α(3)β(1)-integrin protein expression levels in diabetic SHR. Glomerular injury in diabetic SHR was also associated with increases in NF-κB-induced inflammation and oxidative stress relative to vehicle-treated SHR, and CoPP significantly blunted diabetes-induced increases in glomerular inflammation and oxidative stress in diabetic SHR. These effects were specific to exogenous stimulation of HO-1, since incubation with the HO inhibitor stannous mesoporphyrin alone did not alter glomerular inflammatory markers or oxidative stress yet was able to prevent CoPP-mediated decreases in these parameters. These data suggest that induction of HO-1 reduces diabetic induced-glomerular injury and apoptosis and these effects are associated with decreased NF-κB-induced inflammation and oxidative stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号