首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   39篇
  免费   7篇
  2023年   2篇
  2021年   3篇
  2020年   2篇
  2019年   1篇
  2018年   2篇
  2017年   1篇
  2016年   2篇
  2015年   4篇
  2014年   4篇
  2013年   4篇
  2012年   3篇
  2011年   4篇
  2010年   2篇
  2008年   2篇
  2007年   2篇
  2006年   3篇
  2004年   3篇
  2003年   1篇
  2000年   1篇
排序方式: 共有46条查询结果,搜索用时 93 毫秒
1.
Newcastle disease virus (NDV) edits its P gene by inserting one or two G residues at the conserved editing site (UUUUUCCC, genome sense) and transcribes the P mRNA (unedited), the V mRNA (with a +1 frameshift), and the W mRNA (with a +2 frameshift). All three proteins are amino coterminal but vary at their carboxyl terminus in length and amino acid composition. Little is known about the role of the V and W proteins in NDV replication and pathogenesis. We have constructed and recovered two recombinant viruses in which the expression of the V or both the V and W proteins has been abolished. Compared to the parental virus, the mutant viruses showed impaired growth in cell cultures, except in Vero cells. However, transient expression of the carboxyl-terminal portion of the V protein enhanced the growth of the mutant viruses. In embryonated chicken eggs, the parental virus grew to high titers in embryos of different gestational ages, whereas the mutant viruses showed an age-dependent phenomenon, growing to lower titer in more-developed embryos. An interferon (IFN) sensitivity assay showed that the parental virus was more resistant to the antiviral effect of IFN than the mutant viruses. Moreover, infection with the parental virus resulted in STAT1 protein degradation, but not with the mutant viruses. These findings indicate that the V protein of NDV possesses the ability to inhibit alpha IFN and that the IFN inhibitory function lies in the carboxyl-terminal domain. Pathogenicity studies showed that the V protein of NDV significantly contributes to the virus virulence.  相似文献   
2.
A significant plan is executed in the present study to study the effect of double-compression coating on flurbiprofen core mini-tablets to achieve the pulsatile colonic delivery to deliver the drug at a specific time as per the patho-physiological need of the disease that results in improved therapeutic efficacy. In this study, pulsatile double-compression-coated tablets were prepared based on time-controlled hydroxypropyl methylcellulose K100M inner compression coat and pH-sensitive Eudragit S100 outer compression coat. Then, the tablets were evaluated for both physical evaluation and drug-release studies, and to prove these results, in vivo pharmacokinetic studies in human volunteers were conducted. From the in vitro drug-release studies, F6 tablets were considered as the best formulation, which retarded the drug release in the stomach and small intestine (3.42 ± 0.12% in 5 h) and progressively released to the colon (99.78 ± 0.74% in 24 h). The release process followed zero-order release kinetics, and from the stability studies, similarity factor between dissolution data before and after storage was found to be 88.86. From the pharmacokinetic evaluation, core mini-tablets producing peak plasma concentration (Cmax) was 14,677.51 ± 12.16 ng/ml at 3 h Tmax and pulsatile colonic tablets showed Cmax = 12,374.67 ± 16.72 ng/ml at 12 h Tmax. The area under the curve for the mini and pulsatile tablets was 41,238.52 and 72,369.24 ng-h/ml, and the mean resident time was 3.43 and 10.61 h, respectively. In conclusion, development of double-compression-coated tablets is a promising way to achieve the pulsatile colonic release of flurbiprofen.KEY WORDS: core mini-tablets, double-compression coating, inner compression coat, outer compression coat, similarity factor  相似文献   
3.
4.
5.
A new series of 10-substituted 5,5-dioxo-5,10-dihydro[1,2,4]triazolo[1,5-b]-[1,2,4]benzothiadiazine arylsulfonamide derivatives (10a-j and 13a-f) was synthesized. The structures of these compounds were confirmed on the basis of spectral data, elemental analysis, X-ray analysis, and quantum chemical calculations. These compounds were evaluated for their efficacy as antibacterial agents against various Gram-positive and Gram-negative strains of bacteria. Amongst these compounds 10f and 10i were the most active compounds against Escherichia coli and 13e against E. coli as well as Bacillus subtilis. Moreover, other compounds also showed potent inhibitory activity in comparison to the standard drugs.  相似文献   
6.
The paramyxovirus hemagglutinin-neuraminidase (HN) is a multifunctional protein responsible for attachment to receptors containing sialic acid, neuraminidase (NA) activity, and the promotion of membrane fusion, which is induced by the fusion protein. Analysis of the three-dimensional structure of Newcastle disease virus (NDV) HN protein revealed the presence of a large pocket, which mediates both receptor binding and NA activities. Recently, a second sialic acid binding site on HN was revealed by cocrystallization of the HN with a thiosialoside Neu5Ac-2-S-alpha(2,6)Gal1OMe, suggesting that NDV HN contains an additional sialic acid binding site. To evaluate the role of the second binding site on the life cycle of NDV, we rescued mutant viruses whose HNs were mutated at Arg516, a key residue that is involved in the second binding site. Loss of the second binding site on mutant HNs was confirmed by the hemagglutination inhibition test, which uses an inhibitor designed to block the NA active site. Characterization of the biological activities of HN showed that the mutation at Arg516 had no effect on NA activity. However, the fusion promotion activity of HN was substantially reduced by the mutation. Furthermore, the mutations at Arg516 slowed the growth rate of virus in tissue culture cells. These results suggest that the second binding site facilitates virus infection and growth by enhancing the fusion promotion activity of the HN.  相似文献   
7.
8.
9.
Evolution of N-terminal sequences of the vertebrate HOXA13 protein   总被引:8,自引:0,他引:8  
While the the role of the homeodomain in HOX function has been evaluated extensively, little attention has been given to the non-homeodomain portions of the HOX proteins. To investigate the evolution of the HOXA13 protein and to identify conserved residues in the N-terminal region of the protein with potential functional significance, N-terminal Hoxa13 coding sequences were PCR-amplified from fish, amphibian, reptile, chicken, and marsupial and eutherian mammal genomic DNA. Compared with fish HOXA13, the mammalian protein has increased in size by 35% primarily owing to the accumulation of alanine repeats and flanking segments rich in proline, glycine, or serine within the first 215 amino acids. Certain residues and amino acid motifs were strongly conserved, and several HOXA13 N-terminal domains were also shared in the paralogous HOXB13 and HOXD13 genes; however, other conserved regions appear to be unique to HOXA13. Two domains highly conserved in HOXA13 orthologs are shared with Drosophila AbdB and other vertebrate AbdB-like proteins. Marsupial and eutherian mammalian HOXA13 proteins have three large homopolymeric alanine repeats of 14, 12, and 17–18 residues that are absent in reptiles, birds, and fish. Thus, the repeats arose after the divergence of reptiles from the lineage that would give rise to the mammals. In contrast, other short homopolymeric alanine repeats in mammalian HOXA13 have remained virtually the same length, suggesting that forces driving or limiting repeat expansion are context dependent. Consecutive stretches of identical third-base usage in alanine codons within the large repeats were found, supporting replication slippage as a mechanism for their generation. However, numerous species-specific base substitutions affecting third-base alanine repeat codon positions were observed, particularly in the largest repeat. Therefore, if the large alanine repeats were present prior to eutherian mammal development as is suggested by the opossum data, then a dynamic process of recurring replication slippage and point mutation within alanine repeat codons must be considered to reconcile these observations. This model might also explain why the alanine repeats are flanked by proline, serine, and glycine-rich sequences, and it reveals a biological mechanism that promotes increases in protein size and, potentially, acquisition of new functions. Received: 8 June 1999 / Accepted: 23 September 1999  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号