首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Controlled-release (CR) tablet formulation of olanzapine was developed using a binary mixture of Methocel® K100 LV-CR and Ethocel® standard 7FP premium by the dry granulation slugging method. Drug release kinetics of CR tablet formulations F1, F2, and F3, each one suitably compressed for 9-, 12-, and 15-kg hardness, were determined in a dissolution media of 0.1 N HCl (pH 1.5) and phosphate buffer (pH 6.8) using type II dissolution apparatus with paddles run at 50 rpm. Ethocel® was found to be distinctly controlling drug release, whereas the hardness of tablets and pH of the dissolution media did not significantly affect release kinetics. The CR test tablets containing 30% Methocel® and 60% Ethocel® (F3) with 12-kg hardness exhibited pH-independent zero-order release kinetics for 24 h. In vivo performance of the CR test tablet and conventional reference tablet were determined in rabbit serum using high-performance liquid chromatography coupled with electrochemical detector. Bioavailability parameters including Cmax, Tmax, and AUC0–48 h of both tablets were compared. The CR test tablets produced optimized Cmax and extended Tmax (P < 0.05). A good correlation of drug absorption in vivo and drug release in vitro (R2 = 0.9082) was observed. Relative bioavailability of the test tablet was calculated as 94%. The manufacturing process employed was reproducible and the CR test tablets were stable for 6 months at 40 ± 2°C/75 ± 5% relative humidity. It was concluded that the CR test tablet formulation successfully developed may improve tolerability and patient adherence by reducing adverse effects.Key words: bioavailability, controlled release, Ethocel®, olanzapine  相似文献   

2.
The relative bioavailability of chlorothiazide from mucoadhesive polymeric compacts is compared to commercial oral suspension in pigs. A single-dose randomized study was conducted in 12 healthy pigs that are 9–10 weeks old. After overnight fasting, pigs were divided into two groups of six animals. To the first group, a reference product containing 50 mg of chlorothiazide suspension, and in the second group, test product (mucoadhesive compacts) chlorothiazide (50 mg) was administered with 75 mL of water via gastric tubes. Blood samples were collected between 0 to 24 h using catheters inserted into the jugular vein. Plasma was separated by protein precipitation, and chlorothiazide concentrations were determined using a high-performance liquid chromatography method. The mean Tmax and the Cmax of chlorothiazide following the administration of oral suspension and mucoadhesive compacts were 0.58 ± 0.20 h and 682.97 ± 415.69 ng/mL and 2.17 ± 0.98 h and 99.42 ± 124.08 ng/mL, respectively. The Kel and T1/2 of chlorothiazide were found to be 1.06 ± 0.28 h−1 and 0.70 ± 0.21 h from suspension and 0.95 ± 1.11 h−1 and 2.05 ± 1.90 h from the compacts, respectively. The Tmax of mucoadhesive compacts were significantly longer (p < 0.05; 2.17 h) than the reference products (0.58 h), whereas the Cmax of compacts were significantly lower (99 ng/mL) than the reference product (683 ng/mL; p < 0.05). The area under the curve (AUC) of compacts accounts only 50.15% (404.32 ± 449.93 ng h/mL) of the reference product’s AUC (806.27 ± 395.97 ng h/mL). The relative bioavailability of the compacts was lower than that of the suspension, and this may be due to the narrow window of absorption for chlorothiazide.Key words: bioavailability, chlorothiazide, mucoadhesive compacts, pigs  相似文献   

3.
Controlled-release (CR) matrix tablet of 4 mg risperidone was developed using flow bound dry granulation–slugging method to improve its safety profile and compliance. Model formulations F1, F2, and F3, consisting of distinct blends of Methocel® K100 LV-CR and Ethocel® standard 7FP premium, were slugged. Each batch of granules (250–1,000 μm), obtained by crushing the slugs, was divided into three portions after lubrication and then compressed to 9-, 12-, and 15-kg hard tablets. In vitro drug release studies were carried out in 0.1 N HCl (pH 1.2) and phosphate buffer (pH 6.8) using a paddle dissolution apparatus run at 50 rpm. The CR test tablet, containing 30% Methocel® and 60% Ethocel® (F3) with 12-kg hardness, exhibited pH-independent zero-order release kinetics for 24 h. The drug release rate was inversely proportional to the content of Ethocel®, while the gel layer formed of Methocel® helped in maintaining the integrity of the matrix. Changes in the hardness of tablet did not affect the release kinetics. The tablets were reproducible and stable for 6 months at 40 ± 2°C/75 ± 5% relative humidity. Risperidone and its active metabolite, 9-hydroxyrisperidone, present in the pooled rabbit’s serum, were analyzed with HPLC-UV at λmax 280 nm. The CR test tablet exhibited bioequivalence to reference conventional tablet in addition to the significantly (p < 0.05) optimized peak concentration, Cmax, and extended peak time, Tmax, of the active moiety. There was a good association between drug absorption in vivo and drug release in vitro (R2 = 0.7293). The successfully developed CR test tablet may be used for better therapeutic outcomes of risperidone.KEY WORDS: controlled release, dry granulation slugging method, risperidone  相似文献   

4.
Novel self-microemulsifying floating tablets were developed to enhance the dissolution and oral absorption of the poorly water-soluble tetrahydrocurcumin (THC). Their physicochemical properties and THC permeability across Caco-2 cell monolayers were assessed. The self-microemulsifying liquid containing THC was adsorbed onto colloidal silicon dioxide, mixed with HPMC, gas-generating agents (sodium bicarbonate and tartaric acid), lactose and silicified-microcrystalline cellulose and transformed into tablets by direct compression. The use of different types/concentrations of HPMC and sodium bicarbonate in tablet formulations had different effects on the floating characteristics and in vitro THC release. The optimum tablet formulation (F2) provided a short floating lag time (∼23 s) together with a prolonged buoyancy (>12 h). About 72% of THC was released in 12 h with an emulsion droplet size in aqueous media of 33.9 ± 1.0 nm while that of a self-microemulsifying liquid was 29.9 ± 0.3 nm. The tablet formulation was stable under intermediate and accelerated storage conditions for up to 6 months. The THC released from the self-microemulsifying liquid and tablet formulations provided an approximately three- to fivefold greater permeability across the Caco-2 cell monolayers than the unformulated THC and indicated an enhanced absorption of THC by the formulations. The self-microemulsifying floating tablet could provide a dosage form with the potential to improve the oral bioavailability of THC and other hydrophobic compounds.KEY WORDS: Caco-2 cells, controlled release, permeability, self-microemulsifying floating tablets, tetrahydrocurcumin  相似文献   

5.
The interest in and need for formulating miconazole nitrate (MN), a broad-spectrum antifungal, as an oral disintegrating tablet for treatment of some forms of candidiasis have increased. Formulation of MN in this dosage form will be more advantageous, producing dual effect: local in the buccal cavity and systemic with rapid absorption. Four formulations were prepared utilizing the foam granulation technique. The prepared tablets were characterized by measuring the weight uniformity, thickness, tensile strength, friability, and drug content. In addition, tablet disintegration time, in vitro dissolution, and in vivo disintegration time were also evaluated. Stability testing for the prepared tablets under stress and accelerated conditions in two different packs were investigated. Each pack was incubated at two different elevated temperature and relative humidity (RH), namely 40 ± 2°C/75 ± 5% RH and 50 ± 2°C/75 ± 5% RH. The purpose of the study is to monitor any degradation reactions which will help to predict the shelf life of the product under the defined storage conditions. Finally, in vivo study was performed on the most stable formula to determine its pharmacokinetic parameters. The results revealed that all the prepared tablets showed acceptable tablet characteristics and were stable under the tested conditions. The most stable formula was that containing magnesium stearate as lubricant, hydrophobic Aerosil R972 as glidant, low urea content, mannitol/microcrystalline cellulose ratio 2:1, and 9% Plasdone XL100 as superdisintegrant. The in vivo results revealed that the tested formula showed rapid absorption compared to the physical blend (tmax were 1 and 4 h, respectively), while the extent of absorption was almost the same.KEY WORDS: accelerated stability testing, bioavailability, foam granulation technique, miconazole nitrate, oral disintegrating tablet  相似文献   

6.
The objective of this study is to formulate lyophilized oral sustained release polymeric nanoparticles of nateglinide in order to decrease dosing frequency, minimize side effects, and increase bioavailability. Nateglinide-loaded poly Ɛ-caprolactone nanoparticles were prepared by emulsion solvent evaporation with ultrasonication technique and subjected to various studies for characterization including scanning electron microscopy (SEM), Fourier transform infrared spectroscopy, photon correlation spectroscopy and evaluated for in vitro drug release and pharmacodynamic studies. The influence of increase in polymer concentration, ultrasonication time, and solvent evaporation rate on nanoparticle properties was investigated. The formulations were optimized based on the above characterization, and the formulation using 5% polymer, 3-min sonication time, and rota-evaporated was found to have the best drug entrapment efficiency of 64.09 ± 4.27% and size of 310.40 ± 11.42 nm. Based on SEM, nanoparticles were found to be spherical with a smooth surface. In vitro drug release data showed that nanoparticles sustained the nateglinide release for over 12 h compared to conventional tablets (Glinate 60 mg), and drug release was found to follow Fickian mechanism. In vivo studies showed that nanoparticles prolonged the antidiabetic activity of nateglinide in rats significantly (p ≤ 0.05) compared to the conventional tablets (Glinate 60 mg) over a period of 12 h. Accelerated stability data indicated that there was minimal to no change in drug entrapment efficiency.KEY WORDS: drug encapsulation efficiency, nanoparticles, poly Ɛ-caprolactone (PCL), probe sonication  相似文献   

7.
The purpose of the present study was to control in vitro burst effect of the highly water-soluble drug, ropinirole hydrochloride to reduce in vivo dose dumping and to establish in vitroin vivo correlation. The pharmacokinetics of two entirely different tablet formulation technologies is also explored in this study. For pharmacokinetics study, FDA recommends at least 10% difference in drug release for formulations to be studied but here a different approach was adopted. The formulations F8A and F9A having similar dissolution profiles among themselves and with Requip® XL™ (f2 value 72, 77, 71 respectively) were evaluated. The Cmax of formulation F8A comprising hypromellose 100,000 cP was 1005.16 pg/ml as compared to 973.70 pg/ml of formulation F9A comprising hypromellose 4000 cP irrespective of Tmax of 5 and 5.75 h, respectively. The difference in release and extent of absorption in vivo was due to synergistic effect of complex RH release mechanism; however, AUC0–t and AUC0–∞ values were comparable. The level A correlation using the Wagner–Nelson method supported the findings where R2 was 0.7597 and 0.9675 respectively for formulation F8A and F9A. Thus, in vivo studies are required for proving the therapeutic equivalency of different formulation technologies even though f2 ≥ 50. The technology was demonstrated effectively at industrial manufacturing scale of 200,000 tablets.KEY WORDS: controlled release polymer, in vitroin vivo correlation (IVIVC), multiple barrier layer tablets, pharmacokinetics, ropinirole hydrochloride (RH)  相似文献   

8.
This study aimed to identify the response of a salivary stress protein, extracellular heat shock protein (eHSP70), to intense exercise and to investigate the relationship between salivary eHSP70 and salivary immunoglobulin A (SIgA) levels in response to exercise. Sixteen healthy sedentary young males (means ± SD 23.8 ± 1.5 years, 172.2 ± 6.4 cm, 68.3 ± 7.4 kg) performed 59 min of cycling exercise at 75 % VO2max. Saliva and whole blood samples were collected before (Pre), immediately after (Post), and at 1, 2, 3, and 4 h after completion of the exercise (1, 2, 3, and 4 h). The salivary eHSP70 and SIgA levels were measured by enzyme-linked imunosorbent assay (ELISA), and the secretion rates were computed by multiplying the concentration by the saliva flow rate. White blood cells were analyzed using an automated cell counter with a direct-current detection system. The salivary eHSP70 secretion rates were 1.11 ± 0.86, 1.51 ± 1.47, 1.57 ± 1.32, 2.21 ± 2.04, 3.36 ± 2.72, and 6.89 ± 4.02 ng · min−1 at Pre, Post, and 1, 2, 3, and 4 h, respectively. The salivary eHSP70 secretion rate was significantly higher at 4 h than that at Pre, Post, 1, and 3 h (p < 0.05). The SIgA secretion rates were 26.9 ± 12.6, 20.3 ± 10.4, 19.6 ± 11.0, 21.8 ± 12.8, 21.5 ± 11.9, and 21.9 ± 11.7 μg · min−1 at Pre, Post, 1, 2, 3, and 4 h, respectively. The salivary SIgA secretion rate was significantly lower between 1 and 4 h than that at Pre (p < 0.05). There was a positive correlation between salivary eHSP70 and SIgA in both concentration and secretion rates before exercise (p < 0.05). The absolute number of white blood cells significantly increased after exercise, with a maximum at 2 h (p < 0.05). The neutrophil/lymphocyte ratio was significantly increased from 1 to 4 h when compared with that in the Pre samples (p < 0.05). The present study revealed that salivary eHSP70 significantly increased at 4 h after the 59 min of intense exercise in sedentary male subjects. Exercise stress can induce elevated salivary eHSP70 level and upregulate oral immune function partially.  相似文献   

9.
Medical management of heavy metal toxicity, including radioactive ones, is a cause for concern because of their increased use in energy production, healthcare, and mining. Though chelating agents like EDTA and DTPA in parenteral form are available, no suitable oral formulation is there that can trap ingested heavy metal toxicants in the stomach itself, preventing their systemic absorption. The objective of the present study was to develop and optimize gastro-retentive controlled-release tablets of calcium-disodium edentate (Ca-Na2EDTA). Gastro-retentive tablet of Ca-Na2EDTA was prepared by direct compression method. Thirteen tablet formulations were designed using HPMC-K4M, sodium chloride, and carbopol-934 along with effervescing agents sodium bicarbonate and citric acid. Tablet swelling ability, in vitro buoyancy, and drug dissolution studies were conducted in 0.1 N HCl at 37 ± 0.5°C. Ca-Na2EDTA was radiolabeled with technetium-99m for scintigraphy-based in vivo evaluation. Formula F8 (Ca-Na2EDTA 200 mg, carbopol 100 mg, avicel 55 mg, citric acid 30 mg, NaHCO3 70 mg, NaCl 100 mg, and HPMC 95 mg) was found to be optimum in terms of excellent floating properties and sustained drug release. F8 fitted best for Korsmeyer–Peppas equation with an R2 value of 0.993. Gamma scintigraphy in humans showed mean gastric retention period of 6 h. Stability studies carried out in accordance with ICH guidelines and analyzed at time intervals of 0, 1, 2, 4, and 6 months have indicated insignificant difference in tablet hardness, drug content, total floating duration, or matrix integrity of the optimized formulation. Gastro-retentive, controlled-release tablet of Ca-Na2EDTA was successfully developed using effervescent technique as a potential oral antidote for neutralizing ingested heavy metal toxicity.KEY WORDS: calcium disodium EDTA, controlled-release tablet, gamma scintigraphy, heavy metal decorporation  相似文献   

10.
Liposomes (LIP), nanoparticles (NP), dendrimers (DEN), and carbon nanotubes (CNTs), represent eminent classes of drug delivery devices. A study was carried out herewith by employing docetaxel (DTX) as model drug to assess their comparative drug delivery potentials. Under optimized conditions, highest entrapment of DTX was observed in CNT-based formulation (DTX-CNTs, 74.70 ± 4.9%) followed by nanoparticles (DTX-NP, 62.34 ± 1.5%), liposome (49.2 ± 1.51%), and dendrimers (28.26 ± 1.74%). All the formulations were found to be of nanometric size. In vitro release studies were carried out in PBS (pH 7.0 and 4.0), wherein all the formulations showed biphasic release pattern. Cytotoxicity assay in human cervical cancer SiHa cells inferred lowest IC50 value of 1,235.09 ± 41.93 nM with DTX-CNTs, followed by DTX-DEN, DTX-LIP, DTX-NP with IC50 values of 1,571.22 ± 151.27, 1,653.98 ± 72.89, 1,922.75 ± 75.15 nM, respectively. Plain DTX showed higher hemolytic toxicity of 22.48 ± 0.94%, however loading of DTX inside nanocarriers drastically reduced its hemolytic toxicity (DTX-DEN, 17.22 ± 0.48%; DTX-LIP, 4.13 ± 0.19%; DTX-NP, 6.43 ± 0.44%; DTX-CNTs, 14.87 ± 1.69%).KEY WORDS: carbon nanotubes, dendrimer, drug delivery, liposomes, nanoparticles, nanotechnology  相似文献   

11.
This study examined the relationship between exhaustive exercise in the heat at moderate and high intensities on the intracellular heat shock protein 72 (iHsp72) response. Twelve male subjects cycled to exhaustion at 60 and 75 % of maximal oxygen uptake in hot conditions (40 °C, 50 % RH). iHsp72 concentration was measured in monocytes before, at exhaustion and 24 h after exercise. Rectal temperature, heart rate and oxygen uptake were recorded during exercise. Volitional exhaustion occurred at 58.9 ± 12.1 and 27.3 ± 9.5 min (P < 0.001) and a rectal temperature of 39.8 ± 0.4 and 39.2 ± 0.6 °C (P = 0.002), respectively, for 60 and 75 %. The area under the curve above a rectal temperature of 38.5 °C was greater at 60 % (17.5 ± 6.6 °C min) than 75 % (3.4 ± 4.8 °C min; P < 0.001), whereas the rate of increase in rectal temperature was greater at 75 % (5.1 ± 1.7 vs. 2.2 ± 1.4 °C h−1; P < 0.001). iHsp72 concentration increased similarly at exhaustion relative to pre-exercise (P = 0.044) and then increased further at 24 h (P < 0.001). Multiple regression analysis revealed no predictor variables associated with iHsp72 expression; however, a correlation was observed between exercise intensities for the increase in iHsp expression at exhaustion and 24 h (P < 0.05). These results suggest that iHsp72 expression increased in relation to the level of hyperthermia attained and sustained at 60 % and the higher metabolic rate and greater rate of increase in core temperature at 75 %, with the further increase in iHsp72 concentration 24 h after exercise reinforcing its role as a chaperone and cytoprotective agent.  相似文献   

12.
Ellis RH  Hong TD 《Annals of botany》2006,97(5):785-791
Background and Aims The negative logarithmic relationship between orthodox seed longevity and moisture content in hermetic storage is subject to a low-moisture-content limit (mc), but is mc affected by temperature?• Methods Red clover (Trifolium pratense) and alfalfa (Medicago sativa) seeds were stored hermetically at 12 moisture contents (2–15 %) and five temperatures (–20, 30, 40, 50 and 65 °C) for up to 14·5 years, and loss in viability was estimated.• Key Results Viability did not change during 14·5 years hermetic storage at −20 °C with moisture contents from 2·2 to 14·9 % for red clover, or 2·0 to 12·0 % for alfalfa. Negative logarithmic relationships between longevity and moisture contents >mc were detected at 30–65 °C, with discontinuities at low moisture contents; mc varied between 4·0 and 5·4 % (red clover) or 4·2 and 5·5 % (alfalfa), depending upon storage temperature. Within the ranges investigated, a reduction in moisture content below mc at any one temperature had no effect on longevity. Estimates of mc were greater the cooler the temperature, the relationship (P < 0·01) being curvilinear. Above mc, the estimates of CH and CQ (i.e. the temperature term of the seed viability equation) did not differ (P > 0·10) between species, whereas those of KE and CW did (P < 0·001).• Conclusions The low-moisture-content limit to negative logarithmic relationships between seed longevity and moisture content in hermetic storage increased the cooler the storage temperature, by approx. 1·5 % over 35 °C (4·0–4·2 % at 65 °C to 5·4–5·5 % at 30–40 °C) in these species. Further reduction in moisture content was not damaging. The variation in mc implies greater sensitivity of longevity to temperature above, compared with below, mc. This was confirmed (P < 0·005).  相似文献   

13.
The purpose of this work was to investigate the influence of Eudragit®E100 polymer in modifying the release rates and compaction properties of water soluble model drug paracetamol from Carbopol®971P NF polymer matrix tablets prepared by direct compression. The effects of the ratio of the two polymers, the total polymeric content, and the tablets mechanical strength on paracetamol release rates were investigated. Dissolution studies were conducted using USP XX Π rotating paddle apparatus at 50 rpm and 37°C at three different stages (pH 1.2, 4.8, and 6.8). Results showed that the polymers combination improved significantly the compaction properties of paracetamol tablets as evident by the higher crushing strengths (8.3 ± 0.4 Kp) compared to polymer-free tablets (3.4 ± 0.2 Kp) at intermediate compression pressure of 490 MPa. When combined with Carbopol®971P NF, Eudragit®E100 was found to be capable of extending paracetamol release for more than 12 h compared to 1 h for polymers-free tablets. The combined polymers were able to control paracetamol release in a pH independent pattern. The f2 (similarity factor) analysis showed that the ratio between the polymers and the total polymer concentration exhibited significant impact on drug release rates. In conclusion, Eudragit®E100 when combined with Carbopol®971P NF was capable of improving the compaction and sustained release properties of paracetamol. Korsmeyer–Peppas model was found to be the most suitable for fitting drug release data. The polymer combinations can potentially be used to control the release rates of highly water soluble drugs.KEY WORDS: Carbopol®971P NF, Eudragit®E100, matrix tablet, pH-independent release, sustained  相似文献   

14.
Tigernut starch has been isolated and modified by forced retrogradation of the acidic gel by freezing and thawing processes. Relevant physicochemical and functional properties of the new excipient (tigernut starch modified by acid gelation and accelerated (forced) retrogradation (STAM)) were evaluated as a direct compression excipient in relation to the native tigernut starch (STNA), intermediate product (tigernut starch modified by acid gelation (STA)), and microcrystalline cellulose (MCC). The particle morphology, swelling capacity, moisture sorption, differential scanning calorimeter (DSC) thermographs and X-ray powder diffraction (XRD) patterns, flow, dilution capacity, and tablet disintegration efficiency were evaluated. The particles of STNA were either round or oval in shape, STA were smooth with thick round edges and hollowed center while STAM were long, smooth, and irregularly shaped typically resembling MCC. The DSC thermographs of STNA and MCC showed two endothermic transitions as compared with STA and STAM which showed an endothermic and an exothermic. The moisture uptake, swelling, flow, and dilution capacity of STAM were higher than those of MCC, STA, and STNA. The XRD pattern and moisture sorption profile of STAM showed similarities and differences with STNA, STA, and MCC that relate the modification. Acetylsalicylic acid (ASA) tablets containing STAM disintegrated at 3 ± 0.5 min as compared with the tablets containing STNA, STA, and MCC which disintegrated at 8.5 ± 0.5, 10 ± 0.5, and 58 ± 0.8 min, respectively. The study shows the physicochemical properties of tigernut starch modified by forced retrogradation as well as its potential as an efficient direct compression excipient with enhanced flow and disintegration abilities for tablets production.Key words: direct compression excipient, forced retrogradation, functional properties, physicochemical properties, tigernut starch  相似文献   

15.
The present research work focused on the comparative assessment of porous versus nonporous films in order to develop a suitable buccoadhesive device for the delivery of glibenclamide. Both films were prepared by solvent casting technique using the 32 full factorial design, developing nine formulations (F1–F9). The films were evaluated for ex vivo mucoadhesive force, ex vivo mucoadhesion time, in vitro drug release (using a modified flow-through drug release apparatus), and ex vivo drug permeation. The mucoadhesive force, mucoadhesion time, swelling index, and tensile strength were observed to be directly proportional to the content of HPMC K4M. The optimized porous film (F4) showed an in vitro drug release of 84.47 ± 0.98%, ex vivo mucoadhesive force of 0.24 ± 0.04 N, and ex vivo mucoadhesion time of 539.11 ± 3.05 min, while the nonporous film (NF4) with the same polymer composition showed a release of 62.66 ± 0.87%, mucoadhesive force of 0.20 ± 0.05 N, and mucoadhesive time of 510 ± 2.00 min. The porous film showed significant differences for drug release and mucoadhesion time (p < 0.05) versus the nonporous film. The mechanism of drug release was observed to follow non-Fickian diffusion (0.1 < n < 0.5) for both porous and nonporous films. Ex vivo permeation studies through chicken buccal mucosa indicated improved drug permeation in porous films versus nonporous films. The present investigation established porous films to be a cost-effective buccoadhesive delivery system of glibenclamide.KEY WORDS: buccoadhesive drug delivery, glibenclamide, in vitro release and ex vivo permeation, porous film  相似文献   

16.

Background

Exercise training is beneficial in health and disease. Part of the training effect materialises in the brainstem due to the exercise-associated somatosensory nerve traffic. Because active music making also involves somatosensory nerve traffic, we hypothesised that this will have training effects resembling those of physical exercise.

Methods

We compared two groups of healthy, young subjects between 18 and 30 years: 25 music students (13/12 male/female, group M) and 28 controls (12/16 male/female, group C), peers, who were non-musicians. Measurement sessions to determine resting heart rate, resting blood pressure and baroreflex sensitivity (BRS) were held during morning hours.

Results

Groups M and C did not differ significantly in age (21.4 ± 3.0 vs 21.2 ± 3.1 years), height (1.79 ± 0.11 vs 1.77 ± 0.10 m), weight (68.0 ± 9.1 vs 66.8 ± 10.4 kg), body mass index (21.2 ± 2.5 vs 21.3 ± 2.4 kg∙m−2) and physical exercise volume (39.3 ± 38.8 vs 36.6 ± 23.6 metabolic equivalent hours/week). Group M practised music daily for 1.8 ± 0.7 h. In group M heart rate (65.1 ± 10.6 vs 68.8 ± 8.3 beats/min, trend P =0.08), systolic blood pressure (114.2 ± 8.7 vs 120.3 ± 10.0 mmHg, P = 0.01), diastolic blood pressure (65.0 ± 6.1 vs 71.0 ± 6.2 mmHg, P < 0.01) and mean blood pressure (83.7 ± 6.4 vs 89.4 ± 7.1, P < 0.01) were lower than in group C. BRS in groups M and C was 12.9 ± 6.7 and 11.3 ± 5.8 ms/mmHg, respectively (P = 0.17).

Conclusions

The results of our study suggest that active music making has training effects resembling those of physical exercise training. Our study opens a new perspective, in which active music making, additionally to being an artistic activity, renders concrete health benefits for the musician.  相似文献   

17.
In order to verify the effects of heat and exercise acclimation (HA) on resting and exercise-induced expression of plasma and leukocyte heat shock protein 72 (Hsp72) in humans, nine healthy young male volunteers (25.0 ± 0.7 years; 80.5 ± 2.0 kg; 180 ± 2 cm, mean ± SE) exercised for 60 min in a hot, dry environment (40 ± 0°C and 45 ± 0% relative humidity) for 11 days. The protocol consisted of running on a treadmill using a controlled hyperthermia technique in which the work rate was adjusted to elevate the rectal temperature by 1°C in 30 min and maintain it elevated for another 30 min. Before and after the HA, the volunteers performed a heat stress test (HST) at 50% of their individual maximal power output for 90 min in the same environment. Blood was drawn before (REST), immediately after (POST) and 1 h after (1 h POST) HST, and plasma and leukocytes were separated and stored. Subjects showed expected adaptations to HA: reduced exercise rectal and mean skin temperatures and heart rate, and augmented sweat rate and exercise tolerance. In HST1, plasma Hsp72 increased from REST to POST and then returned to resting values 1 h POST (REST: 1.11 ± 0.07, POST: 1.48 ± 0.10, 1 h POST: 1.22 ± 0.11 ng mL−1; p < 0.05). In HST2, there was no change in plasma Hsp72 (REST: 0.94 ± 0.08, POST: 1.20 ± 0.15, 1 h POST: 1.17 ± 0.16 ng mL−1; p > 0.05). HA increased resting levels of intracellular Hsp72 (HST1: 1 ± 0.02 and HST2: 4.2 ± 1.2 density units, p < 0.05). Exercise-induced increased intracellular Hsp72 expression was observed on HST1 (HST1: REST, 1 ± 0.02 vs. POST, 2.9 ± 0.9 density units, mean ± SE, p < 0.05) but was inhibited on HST2 (HST2: REST, 4.2 ± 1.2 vs. POST, 4.4 ± 1.1 density units, p > 0.05). Regression analysis showed that the lower the pre-exercise expression of intracellular Hsp72, the higher the exercise-induced increase (R = −0.85, p < 0.05). In conclusion, HA increased resting leukocyte Hsp72 levels and inhibited exercise-induced expression. This intracellular adaptation probably induces thermotolerance. In addition, the non-increase in plasma Hsp72 after HA may be related to lower stress at the cellular level in the acclimated individuals.  相似文献   

18.
The present study aimed at development of capsular dosage form of surface-adsorbed nanoemulsion (NE) of olmesartan medoxomil (OLM) so as to overcome the limitations associated with handling of liquid NEs without affecting their pharmaceutical efficacy. Selection of oil, surfactant, and cosurfactant for construction of pseudoternary phase diagrams was made on the basis of solubility of drug in these excipients. Rationally selected NE formulations were evaluated for percentage transmittance, viscosity, refractive index, globule size, zeta potential, and polydispersity index (PDI). Formulation (F3) comprising of Capmul MCM® (10% v/v), Tween 80® (11.25% v/v), polyethylene glycol 400 (3.75% v/v), and double-distilled water (75% v/v) displayed highest percentage cumulative drug release (%CDR; 96.69 ± 1.841), least globule size (17.51 ± 5.87 nm), low PDI (0.203 ± 0.032), high zeta potential (−58.93 ± 0.98 mV), and hence was selected as the optimized formulation. F3 was adsorbed over colloidal silicon dioxide (2 ml/400 mg) to produce free-flowing solid surface-adsorbed NE that presented a ready-to-fill capsule composition. Conversion of NE to surface-adsorbed NE and its reconstitution to NE did not affect the in vitro release profile of OLM as the similarity factor with respect to NE was found to be 66% and 73% respectively. The %CDR after 12 h for optimized NE, surface-adsorbed NE, and reconstituted NE was found to be 96.69 ± 0.54, 96.07 ± 1.76, and 94.78 ± 1.57, respectively (p > 0.05). The present study established capsulated surface-adsorbed NE as a viable delivery system with the potential to overcome the handling limitations of NE.KEY WORDS: bioavailability, nanoemulsion, olmesartan medoxomil, oral  相似文献   

19.

Background

Few works have evaluated the effect of statins on left ventricular dysfunction in patients with chronic heart failure (CHF), by using tissue Doppler imaging (TDI). We therefore aimed to investigate whether atorvastatin treatment may influence prognosis and myocardial performance evaluated by TDI in subjects with CHF.

Methods

Five hundred thirty-two consecutive CHF outpatients enrolled in a local registry, the Daunia Heart Failure Registry, were prospectively analysed. 195 patients with CHF and left ventricular ejection fraction (LVEF) ≤40 %, either in treatment with atorvastatin (N: 114) or without statins (N: 81), underwent TDI examination. Adverse events were evaluated during follow-up.

Results

The atorvastatin group showed a lower incidence of adverse events (cardiac death: 0 % vs 7 %, p < 0.01), and better TDI performance (E/E’ 15 ± 5.7 vs 18 ± 8.3, p < 001) than controls. Ischaemic CHF patients in treatment with atorvastatin also showed a lower incidence of adverse events (death: 10 % vs 26 %, p < 0.05; sustained ventricular arrhythmias: 5 % vs 19 %, p < 0.05, cardiac death: 0 vs 8 %, p < 0.05) and better TDI performance (E/E’ ratio: 15.00 ± 5.68 vs 19.72 ± 9.14, p < 0.01; St: 353.70 ± 48.96 vs 303.33 ± 68.52 msec, p < 0.01) than controls. The association between atorvastatin and lower rates of cardiac death remained statistically significant even after correction in a multivariable analysis (RR 0.83, 95 % CI 0.71–0.96, p < 0.05 in CHF with LVEF ≤40 %; RR 0.77, 95 % CI 0.62–0.95, p < 0.05 in ischaemic CHF with LVEF ≤40 %).

Conclusions

Treatment with atorvastatin in outpatients with systolic CHF is associated with fewer cardiac deaths, and a better left ventricular performance, as assessed by TDI.  相似文献   

20.
Matrices containing PEO fail to provide stable drug release profiles when stored at elevated temperatures for a period of time. The present study aims to stabilize diltiazem HCl release from matrices made from various molecular weights of polyox powders. To this end, various molecular weights of polyox with and without vitamin E (0.25, 0.5 and 1% w/w) were stored at 40°C for 0, 2, 4 and 8 weeks. The aged polyox powders were then mixed with the model drug at a ratio of 1:1 and compressed into tablets. At different time intervals, the aged polyox with vitamin E were taken out of oven and mixed with the drug (1:1 ratio) and compressed into tablets. Dissolution studies showed a significant increase in diltiazem HCl release rate to occur with increased storage time at 40°C ± 1 from tablets made from the aged polyox (no vitamin E). This was as a result of depolymerization of the aged polyox powders as compared to the fresh polyox samples. This was confirmed by differential scanning calorimetry (DSC) which showed a reduction in the melting point of the aged samples. Concentrations of vitamin E as low as 0.25% w/w was able to overcome the quick release of drug from the matrices made from aged polyox powders. DSC traces showed that the melting point of aged polyox samples containing vitamin E remained the same as that of the fresh samples. The presence of vitamin E is essential to stabilize the drug release from polyox matrices containing diltiazem HCl.Key words: depolymerization, drug release kinetics, molecular weight, polyox matrices, thermal behaviour  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号