首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   191篇
  免费   21篇
  国内免费   1篇
  2023年   1篇
  2021年   3篇
  2018年   4篇
  2017年   5篇
  2016年   8篇
  2015年   8篇
  2014年   6篇
  2013年   6篇
  2012年   12篇
  2011年   7篇
  2010年   18篇
  2009年   10篇
  2008年   12篇
  2007年   7篇
  2006年   9篇
  2005年   5篇
  2004年   4篇
  2003年   7篇
  2002年   5篇
  2001年   7篇
  2000年   2篇
  1999年   3篇
  1998年   10篇
  1997年   6篇
  1996年   4篇
  1995年   2篇
  1994年   3篇
  1993年   7篇
  1992年   1篇
  1991年   2篇
  1990年   5篇
  1989年   3篇
  1988年   1篇
  1987年   1篇
  1986年   1篇
  1984年   1篇
  1983年   1篇
  1982年   2篇
  1981年   1篇
  1980年   1篇
  1979年   1篇
  1978年   1篇
  1977年   2篇
  1975年   2篇
  1971年   2篇
  1955年   1篇
  1952年   1篇
  1951年   1篇
  1929年   1篇
排序方式: 共有213条查询结果,搜索用时 593 毫秒
1.
J Kopitz  B Rist    P Bohley 《The Biochemical journal》1990,267(2):343-348
Ornithine decarboxylase (ODC) was purified 6500-fold from NMRI mouse kidneys under conditions designed to inhibit degradation by proteinases. The enzyme was homogeneous by SDS/polyacrylamide-gel electrophoresis, and the specific activity was among the highest reported. The yield was 70%. A monoclonal antibody against this preparation was generated and used in studies to investigate the half-life of ODC in cultured rat hepatocytes labelled with [35S]methionine. This value was 39 +/- 4 min and was unchanged when either NH4Cl (as a lysosomotropic agent) or leupeptin (as a lysosomal proteinase inhibitor) was added to the culture medium. Thus the intracellular turnover of ODC in cultured hepatocytes occurs mainly in extra-lysosomal compartments. Arginylation of rat ODC was investigated in vitro by incubation with L-[3H]arginyl-tRNA, and the incorporation of the label was compared with that of total cytosolic proteins. Arginylated ODC had a specific radioactivity 8600 times that of the bulk of cytosolic protein. Edman degradation of this ODC showed that the post-translational arginylation occurred only at the alpha-amino end of the enzyme. The inhibitor of arginyl-tRNA:protein arginyltransferase (EC 2.3.2.8), L-glutamyl-L-valyl-L-phenylalanine, increased the half-life of ODC in cultured hepatocytes from 39 min to more than 90 min. The possible significance of the preferential post-translational arginylation of ornithine decarboxylase to its rapid turnover is discussed.  相似文献   
2.
1. Transport and accumulation of 2-deoxy-D-glucose (2dGlc) in rat and murine peritoneal macrophages were investigated by using C-1-3H-labelled and C-2,6-3H-labelled 2dGlc. 2. There was active accumulation of both C-1- and C-2,6-labelled 2dGlc by quiescent rat and murine macrophages via a phloretin-inhibitable transport system. 3. The rate of uptake and accumulation of 2dGlc (C-1 label) was increased by exposure to human macrophage colony-stimulating factor (mCSF-1) (1000 units/ml) in both murine and rat macrophages. This indicates that mCSF-1 enhances coupling between hexokinase activity and glucose transport at the endofacial surface of the transporter. 4. Phorbol 12-myristate 13-acetate ('phorbol') at 40 nM stimulated 2dGlc in rat macrophages entirely by increasing the C-2,6 label uptake. This indicates that phorbol stimulates 2dGlc uptake mainly by increasing the activity of the pentose phosphate pathway. 5. Simultaneous exposure to phorbol and mCSF-1 stimulates 2dGlc uptake to a greater extent than found with either phorbol or mCSF-1 alone. This result is explained by a simultaneous enhancement of pentose phosphate-pathway activity and of hexokinase activity acting at the endofacial surface of the cell membrane. The dual activation of these serial processes coupled to the loss of the reaction products of the pentose phosphate-shunt pathway from the cells in the form of reactive oxygen intermediates, protons and CO2 could explain the synergistic action of phorbol and mCSF-1 in activation of sugar transport in macrophages.  相似文献   
3.
We have broadly defined the DNA regions regulating esterase6 activity in several life stages and tissue types of D. melanogaster using P- element-mediated transformation of constructs that contain the esterase6 coding region and deletions or substitutions in 5' or 3' flanking DNA. Hemolymph is a conserved ancestral site of EST6 activity in Drosophila and the primary sequences regulating its activity lie between -171 and -25 bp relative to the translation initiation site: deletion of these sequences decrease activity approximately 20-fold. Hemolymph activity is also modulated by four other DNA regions, three of which lie 5' and one of which lies 3' of the coding region. Of these, two have positive and two have negative effects, each of approximately twofold. Esterase6 activity is present also in two male reproductive tract tissues; the ejaculatory bulb, which is another ancestral activity site, and the ejaculatory duct, which is a recently acquired site within the melanogaster species subgroup. Activities in these tissues are at least in part independently regulated: activity in the ejaculatory bulb is conferred by sequences between -273 and -172 bp (threefold decrease when deleted), while activity in the ejaculatory duct is conferred by more distal sequences between -844 and -614 bp (fourfold decrease when deleted). The reproductive tract activity is further modulated by two additional DNA regions, one in 5' DNA (-613 to -284 bp; threefold decrease when deleted) and the other in 3' DNA (+1860 to +2731 bp; threefold decrease when deleted) that probably overlaps the adjacent esteraseP gene. Collating these data with previous studies suggests that expression of EST6 in the ancestral sites is mainly regulated by conserved proximal sequences while more variable distal sequences regulate expression in the acquired ejaculatory duct site.   相似文献   
4.
Immunoglobulins are encoded by a large multigene system that undergoes somatic rearrangement and additional genetic change during the development of immunoglobulin-producing cells. Inducible antibody and antibody-like responses are found in all vertebrates. However, immunoglobulin possessing disulfide-bonded heavy and light chains and domain-type organization has been described only in representatives of the jawed vertebrates. High degrees of nucleotide and predicted amino acid sequence identity are evident when the segmental elements that constitute the immunoglobulin gene loci in phylogenetically divergent vertebrates are compared. However, the organization of gene loci and the manner in which the independent elements recombine (and diversify) vary markedly among different taxa. One striking pattern of gene organization is the "cluster type" that appears to be restricted to the chondrichthyes (cartilaginous fishes) and limits segmental rearrangement to closely linked elements. This type of gene organization is associated with both heavy- and light-chain gene loci. In some cases, the clusters are "joined" or "partially joined" in the germ line, in effect predetermining or partially predetermining, respectively, the encoded specificities (the assumption being that these are expressed) of the individual loci. By relating the sequences of transcribed gene products to their respective germ-line genes, it is evident that, in some cases, joined-type genes are expressed. This raises a question about the existence and/or nature of allelic exclusion in these species. The extensive variation in gene organization found throughout the vertebrate species may relate directly to the role of intersegmental (V<==>D<==>J) distances in the commitment of the individual antibody-producing cell to a particular genetic specificity. Thus, the evolution of this locus, perhaps more so than that of others, may reflect the interrelationships between genetic organization and function.   相似文献   
5.
6.
Schistosomiasis vector snails are subjected to extreme seasonal changes, particularly in ephemeral rivers and lentic waterbodies. In the tropics, aestivation is one of the adaptive strategies for survival and is used by snails in times of extremely high temperatures and desiccation. Aestivation therefore plays an important role in maintaining the transmission of schistosomiasis. This review assesses the possible impacts of climate change on the temporal and spatial distribution of schistosomiasis-transmitting snails with special emphasis on aestivation, and discusses the effect of schistosome infection on aestivation ability. The impacts of parasite development on snails, as well as physiological changes, are discussed with reference to schistosomiasis transmission. This review shows that schistosome-infected snails have lower survival rates during aestivation, and that those that survive manage to get rid of the infection. In general, snail aestivation ability is poor and survival chances diminish with time. Longer dry periods result in fewer, as well as uninfected, snails. However, the ability of the surviving snails to repopulate the habitats is high.  相似文献   
7.
Pattern recognition receptors (PRRs) play a key role in plant and animal innate immunity. PRR binding of their cognate ligand triggers a signaling network and activates an immune response. Activation of PRR signaling must be controlled prior to ligand binding to prevent spurious signaling and immune activation. Flagellin perception in Arabidopsis through FLAGELLIN‐SENSITIVE 2 (FLS2) induces the activation of mitogen‐activated protein kinases (MAPKs) and immunity. However, the precise molecular mechanism that connects activated FLS2 to downstream MAPK cascades remains unknown. Here, we report the identification of a differentially phosphorylated MAP kinase kinase kinase that also interacts with FLS2. Using targeted proteomics and functional analysis, we show that MKKK7 negatively regulates flagellin‐triggered signaling and basal immunity and this requires phosphorylation of MKKK7 on specific serine residues. MKKK7 attenuates MPK6 activity and defense gene expression. Moreover, MKKK7 suppresses the reactive oxygen species burst downstream of FLS2, suggesting that MKKK7‐mediated attenuation of FLS2 signaling occurs through direct modulation of the FLS2 complex.  相似文献   
8.
ClpB of Escherichia coli is an ATP-dependent ring-forming chaperone that mediates the resolubilization of aggregated proteins in cooperation with the DnaK chaperone system. ClpB belongs to the Hsp100/Clp subfamily of AAA+ proteins and is composed of an N-terminal domain and two AAA-domains that are separated by a "linker" region. Here we present a detailed structure-function analysis of ClpB, dissecting the individual roles of ClpB domains and conserved motifs in oligomerization, ATP hydrolysis, and chaperone activity. Our results show that ClpB oligomerization is strictly dependent on the presence of the C-terminal domain of the second AAA-domain, while ATP binding to the first AAA-domains stabilized the ClpB oligomer. Analysis of mutants of conserved residues in Walker A and B and sensor 2 motifs revealed that both AAA-domains contribute to the basal ATPase activity of ClpB and communicate in a complex manner. Chaperone activity strictly depends on ClpB oligomerization and the presence of a residual ATPase activity. The N-domain is dispensable for oligomerization and for the disaggregating activity in vitro and in vivo. In contrast the presence of the linker region, although not involved in oligomerization, is essential for ClpB chaperone activity.  相似文献   
9.
10.
Rist MJ  Marino JP 《Biochemistry》2002,41(50):14762-14770
Dimerization of two homologous strands of genomic RNA is an essential feature of retroviral replication. In the human immunodeficiency virus type 1 (HIV-1), a conserved stem-loop sequence, the dimerization initiation site (DIS), has been identified as the domain primarily responsible for initiation of this aspect of viral assembly. The DIS loop contains an autocomplementary hexanucleotide sequence flanked by highly conserved 5' and 3' purines and can form a homodimer through a loop-loop kissing interaction. In a structural rearrangement activated by the HIV-1 nucleocapsid protein (NCp7) and considered to be associated with viral particle maturation, the DIS dimer converts from an intermediate kissing to an extended duplex isoform. Using 2-aminopurine (2-AP) labeled sequences derived from the DIS(Mal) variant and fluorescence methods, the two DIS dimer isoforms have been unambiguously distinguished, allowing a detailed examination of the kinetics of this RNA structural isomerization and a characterization of the role of NCp7 in the reaction. In the presence of divalent cations, the DIS kissing dimer is found to be kinetically trapped and converts to the extended duplex isoform only upon addition of NCp7. NCp7 is demonstrated to act catalytically in inducing the structural isomerization by accelerating the rate of strand exchange between the two hairpin stem helices, without disruption of the loop-loop helix. Observation of an apparent maximum conversion rate for NCp7-activated DIS isomerization, however, requires protein concentrations in excess of the 2:1 stoichiometry estimated for high-affinity NCp7 binding to the DIS kissing dimer, indicating that transient interactions with additional NCp7(s) may be required for catalysis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号