首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   133篇
  免费   6篇
  2021年   1篇
  2020年   2篇
  2017年   1篇
  2016年   1篇
  2015年   3篇
  2014年   4篇
  2013年   2篇
  2012年   1篇
  2011年   3篇
  2010年   2篇
  2009年   5篇
  2008年   4篇
  2007年   5篇
  2006年   4篇
  2005年   3篇
  2004年   4篇
  2003年   2篇
  2002年   3篇
  2001年   8篇
  2000年   7篇
  1999年   8篇
  1998年   9篇
  1997年   2篇
  1996年   3篇
  1995年   9篇
  1994年   2篇
  1993年   4篇
  1992年   7篇
  1991年   4篇
  1990年   2篇
  1989年   3篇
  1988年   1篇
  1986年   3篇
  1985年   2篇
  1984年   7篇
  1983年   1篇
  1982年   1篇
  1981年   2篇
  1977年   1篇
  1975年   1篇
  1973年   1篇
  1970年   1篇
排序方式: 共有139条查询结果,搜索用时 312 毫秒
1.
Thiëbaut  Franz  Rigaut  Jean Paul  Feren  Kari  Reith  Albrecht 《Chromosoma》1985,91(5):372-376
By using simultaneously the AgNOR silver staining method, back-scattered electron imaging mode and stereo-tilt in scanning electron microscopy (SEM), it is possible to observe the nucleus through the cell surface, the nucleolus, and the tri-dimensional distribution of the AgNOR-associated acidic proteins. In C3H10T1:2 cells and their 7-12-dimethylbenz--anthracene-treated transformants, the staining demonstrates several intranucleolar silver-staining granules (SSG), surrounded by a weakly staining region. The SSG may represent the fibrillar center (FC) and the weakly staining region, the fibrillar dense component (FD). This component can link several SSG together to form a rope-like structure. In cells with no visible nucleolus and inactive nucleolar organizer regions (NORs) the silver-staining granules are less numerous, close together and the presumed fibrillar dense components are not visible. The SSG are located more peripheraly, and the weakly staining region and the rope-like structure are less prominent in control cell nucleoli than in transformed cells with a comparatively high rate of RNA synthesis.  相似文献   
2.
3.
Immunoglobulins are encoded by a large multigene system that undergoes somatic rearrangement and additional genetic change during the development of immunoglobulin-producing cells. Inducible antibody and antibody-like responses are found in all vertebrates. However, immunoglobulin possessing disulfide-bonded heavy and light chains and domain-type organization has been described only in representatives of the jawed vertebrates. High degrees of nucleotide and predicted amino acid sequence identity are evident when the segmental elements that constitute the immunoglobulin gene loci in phylogenetically divergent vertebrates are compared. However, the organization of gene loci and the manner in which the independent elements recombine (and diversify) vary markedly among different taxa. One striking pattern of gene organization is the "cluster type" that appears to be restricted to the chondrichthyes (cartilaginous fishes) and limits segmental rearrangement to closely linked elements. This type of gene organization is associated with both heavy- and light-chain gene loci. In some cases, the clusters are "joined" or "partially joined" in the germ line, in effect predetermining or partially predetermining, respectively, the encoded specificities (the assumption being that these are expressed) of the individual loci. By relating the sequences of transcribed gene products to their respective germ-line genes, it is evident that, in some cases, joined-type genes are expressed. This raises a question about the existence and/or nature of allelic exclusion in these species. The extensive variation in gene organization found throughout the vertebrate species may relate directly to the role of intersegmental (V<==>D<==>J) distances in the commitment of the individual antibody-producing cell to a particular genetic specificity. Thus, the evolution of this locus, perhaps more so than that of others, may reflect the interrelationships between genetic organization and function.   相似文献   
4.
5.
Three-dimensional images can be assembled by piling up consecutive confocal fluorescent images obtained by confocal scanning laser microscopy. The present work was based on three-dimensional (50-microns-deep) images at high (x, y) resolution obtained with an MRC-500 after en bloc staining of thick slices of rat liver by chromomycin A3 for nuclear DNA. The results of studies on bleaching, fluorescence excitation and emission intensities at various depths of histologic preparations are described. These effects could be evaluated separately by acquiring piled-up ("brick-stepping") and non-piled-up ("side-stepping") (x, y) images at consecutive depths and also (x, z) images. Empirical equations allowed the fitting of experimental plots of bleaching versus time, at different laser intensities and at different depths, and of fluorescence emission intensity versus depth. The main conclusions were that under our experimental conditions: (1) there was no attenuation by depth of the fluorochrome penetration, (2) there was no attenuation of the exciting beam intensity up to at least 50 microns deep, (3) there was an attenuation of the fluorescence emission intensity by depth, (4) bleaching happened equally on all planes above and below any confocal plane being studied, and (5) the fluorescence bleaching half-life was independent of depth. A mathematical correction scheme designed to compensate for bleaching and for attenuation of fluorescence emission in depth is presented. This correction is required for obtaining three-dimensional images of better quality, for optimal three-dimensional image segmentation and for any quantitative analysis based upon voxel-discretized emission intensities (gray levels)--e.g., estimating, by confocal image cytometry, textural chromatin parameters and nuclear DNA amounts.  相似文献   
6.

Background  

In addition to known protein-coding genes, large amounts of apparently non-coding sequence are conserved between the human and mouse genomes. It seems reasonable to assume that these conserved regions are more likely to contain functional elements than less-conserved portions of the genome.  相似文献   
7.
Chemotaxis of polymorphonuclear leukocytes (PMNL) from chronic myeloid leukemia (CML) patients followed in a gradient of a chemotactic peptide n-formyl-methionyl-leucyl-phenylalanine (fMLP) is consistently defective in all the phases of the disease. Chemoattractant-induced polymerization of cytoskeletal proteins (actin and tubulin) plays a major role in regulation of cell shape and cellular motility. To study the role of microtubules in defective chemotaxis, we have compared fMLP-induced alterations in organization of microtubules in PMNL from CML patients with those from normal subjects by laser confocal microscopy. Our analysis shows differences in microtubule organization between normal and CML PMNL and suggests that both nucleation of new microtubule and elongation of pre-existing microtubules are essential for PMNL chemotaxis.  相似文献   
8.
To select a Saccharomyces cerevisiae reference strain amenable to experimental techniques used in (molecular) genetic, physiological and biochemical engineering research, a variety of properties were studied in four diploid, prototrophic laboratory strains. The following parameters were investigated: 1) maximum specific growth rate in shake-flask cultures; 2) biomass yields on glucose during growth on defined media in batch cultures and steady-state chemostat cultures under controlled conditions with respect to pH and dissolved oxygen concentration; 3) the critical specific growth rate above which aerobic fermentation becomes apparent in glucose-limited accelerostat cultures; 4) sporulation and mating efficiency; and 5) transformation efficiency via the lithium-acetate, bicine, and electroporation methods. On the basis of physiological as well as genetic properties, strains from the CEN.PK family were selected as a platform for cell-factory research on the stoichiometry and kinetics of growth and product formation.  相似文献   
9.
Regulation of fermentative capacity was studied in chemostat cultures of two Saccharomyces cerevisiae strains: the laboratory strain CEN.PK113-7D and the industrial bakers’ yeast strain DS28911. The two strains were cultivated at a fixed dilution rate of 0.10 h−1 under various nutrient limitation regimes: aerobic and anaerobic glucose limitation, aerobic and anaerobic nitrogen limitation on glucose, and aerobic ethanol limitation. Also the effect of specific growth rate on fermentative capacity was compared in glucose-limited, aerobic cultures grown at dilution rates between 0.05 h−1 and 0.40 h−1. Biomass yields and metabolite formation patterns were identical for the two strains under all cultivation conditions tested. However, the way in which environmental conditions affected fermentative capacity (assayed off-line as ethanol production rate under anaerobic conditions) differed for the two strains. A different regulation of fermentative capacity in the two strains was also evident from the levels of the glycolytic enzymes, as determined by in vitro enzyme assays. With the exception of phosphofructokinase and pyruvate decarboxylase in the industrial strain, no clear-cut correlation between the activities of glycolytic enzymes and the fermentative capacity was found. These results emphasise the need for controlled cultivation conditions in studies on metabolic regulation in S. cerevisiae and demonstrate that conclusions from physiological studies cannot necessarily be extrapolated from one S. cerevisiae strain to the other.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号