首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   51篇
  免费   4篇
  2023年   1篇
  2022年   1篇
  2021年   1篇
  2020年   1篇
  2019年   1篇
  2018年   4篇
  2017年   3篇
  2016年   9篇
  2015年   1篇
  2014年   4篇
  2013年   2篇
  2012年   2篇
  2011年   3篇
  2010年   2篇
  2008年   2篇
  2007年   3篇
  2006年   3篇
  2005年   2篇
  2004年   1篇
  2002年   2篇
  2001年   3篇
  2000年   1篇
  1999年   1篇
  1998年   1篇
  1979年   1篇
排序方式: 共有55条查询结果,搜索用时 166 毫秒
1.
In addition to its builders, termite nests are known to house a variety of secondary opportunistic termite species so‐called inquilines, but little is known about the mechanisms governing the maintenance of these symbioses. In a single nest, host and inquiline colonies are likely to engage in conflict due to nestmate discrimination, and an intriguing question is how both species cope with each other in the long term. Evasive behaviour has been suggested as one of the mechanisms reducing the frequency of host‐inquiline encounters, yet, the confinement imposed by the nests' physical boundaries suggests that cohabiting species would eventually come across each other. Under these circumstances, it is plausible that inquilines would be required to behave accordingly to secure their housing. Here, we show that once inevitably exposed to hosts individuals, inquilines exhibit nonthreatening behaviours, displaying hence a less threatening profile and preventing conflict escalation with their hosts. By exploring the behavioural dynamics of the encounter between both cohabitants, we find empirical evidence for a lack of aggressiveness by inquilines towards their hosts. Such a nonaggressive behaviour, somewhat uncommon among termites, is characterised by evasive manoeuvres that include reversing direction, bypassing and a defensive mechanism using defecation to repel the host. The behavioural adaptations we describe may play an important role in the stability of cohabitations between host and inquiline termite species: by preventing conflict escalation, inquilines may improve considerably their chances of establishing a stable cohabitation with their hosts.  相似文献   
2.
Modelling advection and diffusion of water isotopologues in leaves   总被引:2,自引:0,他引:2  
We described advection and diffusion of water isotopologues in leaves in the non-steady state, applied specifically to amphistomatous leaves. This explains the isotopic enrichment of leaf water from the xylem to the mesophyll, and we showed how it relates to earlier models of leaf water enrichment in non-steady state. The effective length or tortuosity factor of isotopologue movement in leaves is unknown and, therefore, is a fitted parameter in the model. We compared the advection-diffusion model to previously published data sets for Lupinus angustifolius and Eucalyptus globulus. Night-time stomatal conductance was not measured in either data set and is therefore another fitted parameter. The model compared very well with the observations of bulk mesophyll water during the whole diel cycle. It compared well with the enrichment at the evaporative sites during the day but showed some deviations at night for E. globulus. It became clear from our analysis that night-time stomatal conductance should be measured in the future and that the temperature dependence of the tracer diffusivities should be accounted for. However, varying mesophyll water volume did not seem critical for obtaining a good prediction of leaf water enrichment, at least in our data sets. In addition, observations of single diurnal cycles do not seem to constrain the effective length that relates to the tortuosity of the water path in the mesophyll. Finally, we showed when simpler models of leaf water enrichment were suitable for applications of leaf water isotopes once weighted with the appropriate gas exchange flux. We showed that taking an unsuitable leaf water enrichment model could lead to large biases when cumulated over only 1 day.  相似文献   
3.
Spontaneous isoaspartyl formation from aspartyl dehydration or asparaginyl deamidation is a major source of modifications in protein structures. In cells, these conformational changes could be reverted by the protein L-isoaspartyl methyltransferase (PIMT) repair enzyme that converts the isoaspartyl residues into aspartyl. The physiological importance of this metabolism has been recently illustrated in plants. Recent developments allowing peptide isomer identification and quantification at the proteome scale are portrayed. The relevance of these new proteomic approaches based on 2-D electrophoresis or electron capture dissociation analysis methods was initially documented in mammals. Extended use to Arabidopsis model systems is promising for the discovery of controlling mechanisms induced by these particular post-translational modifications and their biological role in plants.  相似文献   
4.
The present study aimed to verify (1) whether seasonal increases in neotropical populations of Plutella xylostella are directly provoked by regular influxes of migrants, and (2) whether temporal variation in food availability is the ecological process behind such predictable events. Over 3 years, plants that P. xylostella prefers were cultivated and irrigated in order to provide a continuous and abundant supply of food. Nevertheless, seasonal oscillations in the population of the herbivore still occurred. The hypothesis of seasonal availability of host plants could not explain the population pattern. In April, when the insect was practically extinct from the area, an artificial infestation (immigration) with 10,000 pupae established a precocious population. Therefore, the start of the natural cycles of population growth, during July–August, seems to be due to external factors, rather than an improvement in local conditions for resident individuals. In the beginning of the natural cycles, the increase in the density of adults significantly preceded the increase in immatures. Plutella xylostella does not diapause, and therefore immigration is the proximate cause of the seasonal population increases. Hypotheses about local factors are suggested to explain the decreasing phase of the predictable population cycles.  相似文献   
5.
Falling of berries bored by Hypothenemus hampei (Ferrari) may be the major loosing factor during the fruiting period. However, only those bored berries which remain in the soil surface before a new yielding period have been recognized as responsible for the damage level Ho achieved by new developing berries. In this paper, we investigated in the plants and in the soil surface, the presence of Coffea canephora cv. Conilon berries bored by H. hampei during the yielding period in Ouro Preto d'Oeste, Rond?nia, Brazil. We took samples, weekly, from December 2000 to June 2001. The data were submitted to the Surviving Regression Analysis, based on a censored Weibull model. During the yielding period, berries fall down continuously and, in average, the proportion of H. hampei bored berries was 4 to 20 times higher in the soil (P < 2,3 x 10-18, n = 62,747) than in the plants. Thus, we argue that adding the "soil environment" to the integrated management strategies could point to new technologies for the control of this insect.  相似文献   
6.
Signy Island, maritime Antarctic, lies within the region of the Southern Hemisphere that is currently experiencing the most rapid rates of environmental change. In this study, peat cores up to 2 m in depth from four moss banks on Signy Island were used to reconstruct changes in moss growth and climatic characteristics over the late Holocene. Measurements included radiocarbon dating (to determine peat accumulation rates) and stable carbon isotope composition of moss cellulose (to estimate photosynthetic limitation by CO 2 supply and model CO 2 assimilation rate). For at least one intensively 14C‐dated Chorisodontium aciphyllum moss peat bank, the vertical accumulation rate of peat was 3.9 mm yr?1 over the last 30 years. Before the industrial revolution, rates of peat accumulation in all cores were much lower, at around 0.6–1 mm yr?1. Carbon‐13 discrimination (Δ), corrected for background and anthropogenic source inputs, was used to develop a predictive model for CO 2 assimilation. Between 1680 and 1900, there had been a gradual increase in Δ, and hence assimilation rate. Since 1800, assimilation has also been stimulated by the changes in atmospheric CO 2 concentration, but a recent decline in Δ (over the past 50–100 years) can perhaps be attributed to documented changes in temperature and/or precipitation. The overall increase in CO 2 assimilation rate (13C proxy) and enhanced C accumulation (14C proxy) are consistent with warmer and wetter conditions currently generating higher growth rates than at any time in the past three millennia, with the decline in Δ perhaps compensated by a longer growing season.  相似文献   
7.
The species saturation hypothesis in ground‐dwelling ant communities was tested, the relationship between local and regional species richness was studied and the possible processes involved in this relationship were evaluated in the present paper. To describe the relationship between local and regional species richness, the ground‐dwelling ant fauna of 10 forest remnants was sampled, using 10 1 m2 quadrats in each remnant. The ants were extracted from the litter by using Winkler sacs. Using regression analyses, an asymptotic pattern between local and regional species richness was detected. This saturated pattern may be related to three processes: (i) high interspecific competition; (ii) habitat species specialization; or (iii) stochastic equilibrium. It is concluded that non‐interactive processes, such as stochastic equilibrium and habitat specialization may act as factors regulating species richness in this community. The predominance of locally restricted species, in all sampled remnants, seems to indicate the occurrence of a high degree of habitat specialization by the ant species. This result is evidence for the hypothesis that community saturation has been generated by non‐interactive processes. Although ants are frequently described as highly interactive, it is possible that interspecific competition is not important in the structuring of ground‐dwelling ant communities.  相似文献   
8.
We evaluate date palm (Phoenix dactylifera L.) agrobiodiversity of Siwa oasis, Egypt, located at the crossroads of ancient Trans-Saharan routes, focusing on diversity both as expressed and maintained by the folk categorization system of Siwa inhabitants (through an ethnographic analysis) and as described by genetic sciences and a morphometric tool based on size and geometry of seeds. We verified that some named types are true cultivars, sharing not only a formal identity, important for Isiwan people, but also a genetic identity. However, we also confirm the existence of “ethnovarieties,” i.e., voluntary collections of multiple clones sharing phenotypic characteristics with the same local name, suggesting the genetic richness is higher than the apparent agrobiodiversity estimated by a superficial ethnobotanical approach. Finally, our research offers new insights on the relative importance of feral and cultivated date palms.  相似文献   
9.
This paper is the first geomycological report regarding the fungal communities on rock surfaces in the Demänovská Ice Cave and the Demänovská Cave of Liberty, Slovakia. The samples were collected in June 2014 from five locations from inside both the caves by using sterile swabs wetted with physiological saline (0.85% NaCl). The density of epilithic fungi isolated from the Demänovská Ice Cave ranged from 238.7 to 575.1 CFU (colony-forming units) per m2 of the rock surface, and from the Demänovská Cave of Liberty ranged from 88.6 to 347 CFU. Seventeen different free-living culturable fungi (15 filamentous fungi, one yeast, and one yeast-like fungus) were isolated from the rock surfaces of both caves. Generally, Cladosporium cladosporioides and Aspergillus flavus were the most frequently cultured species from the Demänovská Ice Cave and the Demänovská Cave of Liberty, respectively. Free-living fungi found on the rock surfaces of both caves can lead to their slow biodegradation.  相似文献   
10.
Symbiosis, the living‐together of unlike organisms, underlies every major transition in evolution and pervades most ecological dynamics. Among examples of symbioses, the simultaneous occupation of a termite nest by its builder termites and intruding invertebrate species (so‐called termitophily) provides suitable macroscopic scenarios for the study of species coexistence in confined environments. Current evidence on termitophily abounds for dynamics occurring at the interindividual level within the termitarium, but is insufficient for broader scales such as the community and the landscape. Here, we inspect the effects of abiotic disturbance on termitophile presence and function in termitaria at these broader scales. To do so, we censused the termitophile communities inhabiting 30 termitaria of distinct volumes which had been exposed to increasing degrees of fire‐induced disturbance in a savanna‐like ecosystem in southeastern Brazil. We provide evidence that such an abiotic disturbance can ease the living‐together of termitophiles and termites. Putative processes facilitating these symbioses, however, varied according to the invader. For nonsocial invaders, disturbance seemed to boost coexistence with termites via the habitat amelioration that termitaria provided under wildfire, as suggested by the positive correlation between disturbance degree and termitophile abundance and richness. As for social invaders (ants), disturbance seemed to enhance associational defenses with termites, as suggested by the negative correlation between the presence of ant colonies and the richness and abundance of other termitarium‐cohabiting termitophiles. It is then apparent that disturbance‐modulated distinct symbioses in these termite nests.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号