首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
  1. Termite nests may offer shelter to a number of species, alleviating the effects of environmental harshness. Certain elevational gradients provide variation on edaphoclimatic features, possibly generating harsh environmental conditions and boosting the number of immigrants seeking shelter within termitaria. Therefore, it is expected that metrics describing the community of termitaria cohabitants would correlate with elevation.
  2. To test this hypothesis, we surveyed the termitophiles inhabiting 20 nests of Nasutitermes coxipoensis along an elevational gradient in a tropical mountain in Brazil. We assessed the richness, abundance, and composition (β‐diversity) of termite nests' cohabitants, testing nest volume and elevational position as explanatory covariates.
  3. We found a positive correlation between the elevation at which termitaria were located and the richness and abundance of cohabiting termitophiles. Additionally, no correlation was found between elevational distance and dissimilarity of cohabitant communities between termitaria. Hence, the understanding that termitaria work as an ‘oasis’ of favorable microclimate is reinforced by our findings that the composition changed but was not correlated to elevation.
  4. In short, environmental harshness boosts the establishment of distinct species of termitophiles in termitaria and it does so regardless of the invading species identity.
  相似文献   

2.
Fungus-growing termites are among the most successful herbivorous animals and improve crop productivity and soil fertility. A range of symbiotic organisms can be found inside their nests. However, interactions of termites with these symbionts are poorly understood. This review provides detailed information on the role of multipartite symbioses (between termitophiles, termites, fungi, and bacteria) in fungus-growing termites for lignocellulose degradation. The specific functions of each component in the symbiotic system are also discussed. Based on previous studies, we argue that the enzymatic contribution from the host, fungus, and bacteria greatly facilitates the decomposition of complex polysaccharide plant materials. The host–termitophile interaction protects the termite nest from natural enemies and maintains the stability of the microenvironment inside the colony.  相似文献   

3.
We tested three non-exclusive hypotheses that the lizard, Gymnodactylus carvalhoi , lives in termitaria to avoid thermal extremes, to avoid predators, or because of an abundance of food (dietary specialist). We first confirm that these geckos are restricted to termitaria in the region studied. Body temperatures ( T b) of geckos averaged below environmental temperatures during day outside of termitaria and above outside temperatures at night; T b averaged only slightly higher than temperatures inside termitaria. We conclude that thermal constraints in Cerrado habitats lacking rocks restrict Gymnodactylus to termite nests. High frequencies of tail loss and the presence of many potential predators within termitaria suggest high encounter rates with predators, indicating that predation pressure does not restrict these geckos to termite nests. Dietary data indicate that G. carvalhoi is a termite specialist. Published data indicate that other Gymnodactylus species and populations are also termite specialists, even though several live primarily outside termitaria (in crevices and under rocks). An evolutionary history of termite specialization and low thermal requirements in the clade ( Gymnodactylus ) predispose them to feed on termites within the termitaria.  相似文献   

4.
Disturbance, particularly agricultural expansion is one of the major threats to the biodiversity and ecological functions of tropical and sub-tropical ecosystems. In this regard, we examined changes in the species richness, abundance, and diversity of termites across different disturbance treatments in a sub-tropical semi-arid savanna in south eastern Zimbabwe. Nine transects (100?×?2 m) representing three habitat disturbance treatments (primary woodland; grazing area; agricultural field) were sampled for termites using a rapid biodiversity assessment protocol. Termites were more abundant and species-rich in primary woodland and grazing area than in the agricultural field. Twelve termite species from three sub-families were present, with Microtermes sp. constituting 35% of the identified termite species. Termite feeding group structure differed significantly among land-use types, and of all termites present, wood-feeding termites were the most abundant while soil-feeders were rare in the agricultural field. In conclusion the observed pattern in termite species richness and relative abundance indicates that termites are very resilient to natural disturbance and might actually benefit from some natural disturbances like they did in the grazing area of this study, but they are not resilient to extreme anthropogenic disturbance. Although there was no notable difference in termite species richness and relative abundance between agricultural field and primary woodland, the pattern observed across the three sites may be potential support for the IDH suggesting that intermediate levels of physical disturbance intensity influence the structure and functioning of termite assemblages in semi-arid savanna.  相似文献   

5.
Large herbivores and termites are important functional groups in African savannahs. Both groups affect small mammals, which are also important determinants for savannah structure and function. Because vegetation on Macrotermes mounds are preferentially grazed by large herbivores, and mounds represent resource-rich distinct habitat patches for small mammals in relatively resource-poor savannahs, termite mounds are ideal sites for studies of how grazing by large mammals and productivity affect communities of small mammals. We conducted an experiment in Lake Mburo National Park, Uganda, with four treatments: large vegetated Macrotermes mounds (with and without large herbivores) and adjacent savannah areas (with and without large herbivores). We replicated the treatment blocks nine times and trapped small mammals regularly over a period of almost 2 years. Small mammal species assemblages differed considerably between mounds and savannah areas. Grazing had a substantial effect on small mammal species assemblages in the resource-poor savannah, but not in the relatively resource-rich termitaria. Small mammal species abundance, biomass, and richness were higher on termite mounds than adjacent savannah areas. Excluding large herbivores caused a major increase in species abundance, biomass, and richness both on savannah and termitaria. Herbaceous plant species evenness was an important determinant of the small mammal community. Small mammal biomass increased with high plant dominance, indicating that a few dominant plant species are important for biomass production of small mammals. Small mammal diversity was not related to any of the treatments, but increased with plant species evenness as well as richness. Fencing increased species dominance in the small mammal community on both savannah and termitaria, probably because competitive patterns shift from inter-guild (that is, between large and small mammals) to intra-guild (that is, between small mammals) when large mammals are excluded. The study highlights the complex interactions among large herbivores, termites, herbaceous plants, and small mammals in African savannahs. When studying the structure and function of small mammal communities it is therefore important to consider several coexisting functional groups.  相似文献   

6.
Abstract 1. Termites (Isoptera) in tropical savannas are known as ecosystem engineers, affecting the spatial and temporal distribution of water, carbon, cations, and nutrients through their mound structures. Their mounds, however, also offer habitation to diverse taxa and feeding guilds of other invertebrates; a keystone role that has not been properly quantified. 2. The aim of this study was to explore the ecosystem role of termitaria in determining invertebrate diversity and their potential trophic interactions. We used stable isotopes to distinguish termite‐feeding invertebrates from invertebrates merely living in termite mounds under field conditions. 3. The results suggest that inquiline spiders (Arachnida) do not feed on termites directly, but on other invertebrates within the termitaria that are termitophagous, elevating the spiders three trophic levels higher than the termites. 4. This study is the first to demonstrate food web interactions among inquiline invertebrates with a stable isotope approach. It provides evidence that termites play a keystone role in the system by providing habitat for various, trophically interacting invertebrates. These results illustrate a rather unexplored ecosystem property of savanna termites.  相似文献   

7.
Both large herbivores and termites are key functional groups in savanna ecosystems, and in many savanna areas, large termite mounds (termitaria) are associated with distinct woody clusters. Studies on the effect of large mammals on tree regeneration are few, and the results are conflicting. Large herbivores have been found to be important seedling predators in some areas, but facilitate tree regeneration by outcompeting small mammals and reducing grass cover in other areas. Through the use of the experimental fencing of termite mounds and adjacent savanna areas in this study, we investigated how termites and large herbivores influence tree regeneration. Termite mounds had a higher number of seedlings, more species richness, more alpha diversity (OD) and lower evenness (E) than savanna plots. Large herbivores did not significantly affect overall seedling density, species richness, OD or E. Beta diversity was higher in savanna areas than on termitaria, and beta diversity decreased in savanna areas when herbivores were excluded. Herbivore exclusion increased the density of the 12 (40 %) most common seedling species, representing 79 % of all seedlings, and fenced plots had relatively taller seedlings than open plots. Thus, termites were the main determinants of tree regeneration in our study area, but large mammals regulated the most common species. Although our study confirms previous work suggesting that large herbivores affect tree regeneration, we found that termites were an even more important determinant. Termite impacts on tree regeneration deserve increased attention by savanna ecologists.  相似文献   

8.
Termites are ecosystem engineers that play an important role in the biotransformation and re‐distribution of nutrients in soil. The dry forests are endemic repositories, but at same time, they are most threatened by extensive livestock and crop farming, fires, and climate change. In Colombia, the best‐protected dry forests are located in the north. The termite fauna of dry forests are poorly known. The aim was to identify the termite species occurring in tropical dry forests of the Colombian Caribbean coast in relation to diet and precipitation, temperature, elevation, and soil properties. A total of 32 species in 1,103 occurrences were found. Termitidae accounted for 78% of the species richness with the Anoplotermes‐group, Microcerotermes, and Nasutitermes being the dominant genera. Differences in species composition and abundance were found across sites. These differences may be linked to anthropogenic disturbance and polygyny and polydomy. Strikingly, our highest elevation site (334 m) had the highest species richness much higher than the two lower elevation sites. This implies an inversion of the common elevation‐diversity gradient, also found for termites which can be explained by increasing precipitation with elevation in the dry forest. An analysis of termite species richness at the global scale confirms that termite species richness correlates positively with rainfall. Hence, rainfall seems to positively affect termite diversity. In line, the studied Colombian tropical dry forests had low diversity compared to rain forests. A decline of species‐rich soil‐feeding termites with increasing aridity may explain why the highest termite diversity occurs in humid tropical rain forests. Abstract in Spanish is available with online material.  相似文献   

9.
Land use change is accelerating globally at the expense of biodiversity and ecosystem functioning. Invertebrates are numerically dominant and functionally important in old growth tropical rain forests but highly susceptible to the adverse effects of forest degradation and fragmentation. Ants (Formicidae) and termites (Blattodea: Termitoidae) perform crucial ecosystem services. Here, the potential effects of anthropogenic disturbance on ant and termite communities in dead wood are investigated. Community composition, generic richness, and occupancy rates of ants and termites were compared among two old growth sites (Danum Valley and Maliau Basin) and one twice‐logged site (the Stability of Altered Forest Ecosystems’ (SAFE) Project), in Sabah, Malaysian Borneo. Occupancy was measured as the number of ant or termite encounters (1) per deadwood items, and (2) per deadwood volume, and acts as surrogates for relative abundance (or generic richness). Termites had a lower wood‐occupancy per volume in logged forest. In contrast, there were more ant encounters, and more ant genera, in logged sites and there was a community shift (especially, there were more Crematogaster encounters). The disruption of soil and canopy structure in logged forest may reduce both termite and fungal decay rates, inducing increased deadwood residence times and therefore favoring ants that nest in dead wood. There is an anthropogenic‐induced shift of dead wood in ants and termites in response to disturbance in tropical rain forests and the nature of that shift is taxon‐specific.  相似文献   

10.
Vast areas of the African savanna landscapes are characterized by tree‐covered Macrotermes termite mounds embedded within a relatively open savanna matrix. In concert with termites, large herbivores are important determinants of savanna woody vegetation cover. The relative cover of woody species has considerable effects on savanna function. Despite the potentially important ecological relationships between termite mounds, woody plants, large herbivores, and birds, these associations have previously received surprisingly little attention. We experimentally studied the effects of termites and large herbivores on the avian community in Lake Mburo National Park, Uganda, where woody vegetation is essentially limited to termite mounds. Our experiment comprised of four treatments in nine replicates; unfenced termite mounds, fenced mounds (excluding large mammals), unfenced adjacent savanna, and fenced savanna. We recorded species identity, abundance, and behavior of all birds observed on these plots over a two‐month period, from late dry until wet season. Birds used termite mounds almost exclusively, with only 3.5% of observations occurring in the treeless intermound savanna matrix. Mean abundance and species richness of birds doubled on fenced (large herbivores excluded) compared to unfenced mounds. Feeding behavior increased when large mammals were excluded from mounds, both in absolute number of observed individuals, and relative to other behaviors. This study documents the fundamental positive impact of Macrotermes termites on bird abundance and diversity in an African savanna. Birds play crucial functional roles in savanna ecosystems, for example, by dispersing fruits or regulating herbivorous insect populations. Thus, the role of birds in savanna dynamics depends on the distribution and abundance of termite mounds.  相似文献   

11.
1. Termitophily in some rove beetles is commonly attributed to the striking termite worker resemblance that is provided by the beetles' hypertrophic (‘physogastric’) abdomen. However, a termite nest may offer to a termitophile additional benefits, such as a continuously repaired shelter. 2. This could apply to Corotoca melantho (Aleocharinae: Corotocini), a viviparous obligatory termitophile staphylinid beetle species. While conferring morphological congruence to its host worker termites, its physogastry may impair mobility, leading to vulnerability and the need for a secure environment. It seems plausible to hypothesise that physogastry in C. melantho would imply in interactions between this termitophile and its host termites as well as its host termitarium. 3. This study provides evidence to build such a hypothesis by inspecting the morpho‐anatomical reproductive traits of this termitophile. It was found that a gradient of growth stages of embryos and larvae in the oviduct explains physogastry in females while pointing to iteroparity. The asynchronous development of oocytes in females, combined with a full developing sequence of sperm cells indicative of continuous spermatogenesis in males, suggests frequent matings. 4. While improving guest–host similarity, physogastry and flightlessness should confer vulnerability to pregnant females, forcing C. melantho to seek close and sheltered environments. These could facilitate the frequent male–female contacts demanded by iteroparity. It is possible, therefore, that physogastry in C. melantho is not only associated with the termites themselves but also with the physical structure of the termitarium. Thus, C. melantho can be hypothesised to be a termitariophile in addition to being a termitophile.  相似文献   

12.
Ecosystem engineers are organisms that directly or indirectly control the availability of resources to other organisms by causing physical state changes in biotic or abiotic materials. Termites (Insecta, Isoptera) are among the most important ecosystem engineers in tropical ecosystems. We used a field experiment in the tall grasslands of Serengeti National Park, Tanzania, to investigate 1) the consumption by termites of grass litter and dung baits along the landscape gradient of catena position, and 2) seasonal variation in litter and dung removal. Our maps of termitaria and patterns of bait removal revealed clear spatial and temporal hotspots of termite activity. In the dry season termites removed more baits at the top‐catena positions than at the bottom positions, but there was no effect of catena position in the wet season. Spatial hotspots of termite activity overlapped with those of both mammalian herbivores and predators. Within the framework of ecosystem engineering, this study suggests that intraspecific aspects of spatial heterogeneity and temporal variability deserve much greater consideration.  相似文献   

13.
Termites have a large influence on ecosystem functioning. Understanding what drives termite activity patterns improves understanding of nutrient cycling, productivity, and heterogeneity in savannas. We present a mechanistic framework that relates the interactive effects of rainfall, grassland structure, large herbivore presence, and soil factors to termite activity. To test this framework, we used grass litterbags to monitor termite activity at ten sites across Hluhluwe‐iMfolozi Park, South Africa. We assessed the effects of abiotic and biotic factors on termite activity at two scales: the large (landscape) scale, variation in bait removal among 300 m2 plots that were distributed across the park and at the small (within‐plot) scale (1–300 m2). Half of our sites were located inside large herbivore exclosures to test for the effect of mammalian herbivore presence. At the landscape scale, termite grass removal declined towards higher rainfall and in the presence of mammalian herbivores. Removal did not depend on soil factors. At the small scale, removal declined with increasing grass height, particularly in the 1 m surrounding the bait bag. Resource quality did not affect bait removal. We suggest that competition for forage drives the negative effect of mammalian herbivores on termites, whereas lower bait removal in taller swards may be due to direct negative effects from rainfall, fire and/or competition with free‐living microbes. Ultimately, we suggest that the impact of termites on nutrient cycling is most pronounced when abiotic (rainfall) and biotic conditions (mammalian herbivory) limit grass removal by fire and decomposition by free‐living microbes.  相似文献   

14.
Mound building termites contribute to savanna vegetation heterogeneity   总被引:1,自引:0,他引:1  
With biomass densities comparable to large ungulates and megaherbivores, termites play a key functional role in many tropical savanna ecosystems. This study focuses on vegetated termite mounds (termitaria) constructed by the Termitidae species Macrotermes herus. We studied how resource rich termitaria affect graminoid herbs (Poaceae and Cyperaceae), forbs and woody species composition and diversity. The density of termitaria explained 89% of the variation in dense thickets in the area. Fire tolerant Acacia species dominated the open savanna while fire sensitive species like Grewia spp. and the succulent Euphorbia candelabrum were restricted to termite mounds. Termitaria plots had four times the mean number of woody species and supported three times as many forb species as the adjacent savanna. For woody species, both the Shannon–Wiener index and the Shannon evenness index were higher on temitaria than on the savanna. There were no differences for graminoid herbs, except for the Shannon evenness index which was higher on termitaria. Our results indicate that graminoid herb richness peaks at lower productivity levels than trees and forbs in savanna ecosystems, as also recently found in temperate areas.  相似文献   

15.
In this study, we investigated the termites of the Brazilian Atlantic Forest, one of the most threatened biodiversity hotspots in the world, in regularly spaced sites from 7° S to 27° S latitude. To our knowledge, this is the only report of a latitudinal survey of termites at species level performed with a standardized sampling protocol. We evaluate termite diversity and abundance, and describe patterns of species composition based on feeding groups along the latitudinal gradient. We also describe the relative contribution of environmental variables to explain diversity patterns. Termite assemblages were investigated by standardized surveys at 15 Atlantic Forest sites, on six transects divided into five sections of 10 m², with 30 sections per site (or 300 m²/site), which were investigated by one trained person for one hour. Observed species richness and abundance were negatively correlated with latitude. The influence of latitude was explained mainly by variables related to temperature, precipitation and ambient energy (potential evapotranspiration). Our results also suggest that temperature exerts a greater constraint on Atlantic Forest termites than productivity, because ambient productivity increases with latitude in this forest but termite diversity decreases. Termite species richness in the Atlantic Forest showed a different pattern than those described for other organisms, increasing in diversity where the coastal‐forest strip narrows. Overall, our results indicate comparatively high termite species richness at northeastern sites and a significant impoverishment of termite assemblages in the southeastern and southern regions of the Atlantic Forest.  相似文献   

16.
Many systems are prone to both exotic plant invasion and frequent natural disturbances. Native species richness can buffer the effects of invasion or disturbance when imposed in isolation, but it is largely unknown whether richness provides substantial resistance against invader impact in the face of disturbance. We experimentally examined how disturbance (drought/burning) influenced the impact of three exotic invaders (Centaurea stoebe, Linaria dalmatica, or Potentilla recta) on native abundance across a gradient of species richness, using previously constructed grassland assemblages. We found that invaders had higher cover in experimentally disturbed plots than in undisturbed plots across all levels of native species richness. Although exotic species varied in cover, all three invaders had significant impacts on native cover in disturbed plots. Regardless of disturbance, however, invader cover diminished with increasing richness. Invader impacts on native cover also diminished at higher richness levels, but only in undisturbed plots. In disturbed plots, invaders strongly impacted native cover across all richness levels, as disturbance favoured invaders over native species. By examining these ecological processes concurrently, we found that disturbance exacerbated invader impacts on native abundance. Although diversity provided a buffering effect against invader impact without disturbance, the combination of invasion and disturbance markedly depressed native abundance, even in high richness assemblages.  相似文献   

17.
This review is an analysis of the dimensions of termite infestation in African savannas. The aim of this work is to draw the attention of ecologists, conservationists, policy makers and farmers to the current and future threats of subterranean termites to the functioning and sustainability of such ecosystem habitats. This study analyzes and describes termite problem (questionable changes in density and assemblage structure) in selected African savannah ecosystems, synthesizes information on the effects of various human induced habitat disturbance regimes on termites’ assemblage structure, predators, nests and feed resources to generate hypotheses relating termite infestation with anthropogenic activities; it describes and critiques existing termite management practices. The review is suggestive that the infestation and resultant undesirable effects of subterranean termites in African savannahs are largely a consequence of the inappropriate savannah management practices (overgrazing, indiscriminate tree cutting and overhunting) undertaken by humans in pursuit of various livelihood options. Based on the evidence presented herein, we hypothesized that (1) human induced habitat disturbance in savanna ecosystems alters the feeding group composition of termites’ assemblages, favoring grass harvesters and polyphagus termite feeders that forage on more abundant food items, paying little attention to rarer food items and (2) habitat disturbance through activities like heavy grazing and overhunting results in decline in the populations of both macro and microscopic termite predators, which eventually enhances the proliferation of termite populations, escalates the density of termite nests particularly epigeal mounds and intensifies consumption of herbaceous savannah vegetation. The review calls for dedicated efforts to develop ecological thresholds of savannah biotic and abiotic ecosystem components in which human induced disturbance regimes trigger the destructive behavior of termites. This would provide information that will act as a precautionary savannah habitat monitoring and decision support tool to prevent future infestation of savannah habitats with termites. Also, the review shows that majority of the termite control practices are ineffective, ecologically unsustainable and above all, do not address the root cause of termite infestation and thus merely provide temporary relief to the problem. As such, termite control methods that attempt to enhance proliferation of termite predators need to be studied, developed and emphasized. This review reveals that human induced habitat disturbance depletes termites’ predator populations, leading to proliferation of termite populations particularly grass harvesters that intensify their consumption on grass biomass and eventually contribute to denudation of herbaceous vegetation cover in savannah ecosystems.  相似文献   

18.
Our understanding of carbon (C) dynamics within savannas is very limited, especially how source/sink dynamics are influenced by the resident biota. Previous measurements of epigeal termite mounds (termitaria), ubiquitous in many savannas, have shown that they are considerable point sources of soil carbon dioxide (CO2), whereas CO2 measurements collected outside the mounds were generally assumed to be independent of termite activity. However, no measurements were conducted along gradients away from the mounds to confirm this. We quantified daytime soil CO2 emissions (soil respiration) along gradients from the center to 20?m from the mound edge in Serengeti National Park, and measured soil temperature/moisture, macro-invertebrate abundance, and vegetation height as variables potentially influencing these emissions. Further, we quantified how far into the savanna termitaria impact CO2 emissions. As in other studies, we found the highest soil CO2 fluxes at the termitaria-center and considerably lower fluxes in the surrounding savanna. Macro-invertebrate abundance was associated with the differences in emissions measured, whereas the other variables were not. The analysis of spatial autocorrelation revealed significantly lower fluxes between the termitaria edge and up to 9?m from the edge compared to the values measured at the termitaria-center and between 10 and 20?m from the termitaria edge. When extrapolating the emissions across the landscape our results suggest that the lower CO2 emissions found between the edge and 9?m fully compensate for the high fluxes measured at the termitaria center. Consequently, our findings provide evidence that termitaria might influence the savanna C source-sink dynamics differently than previously thought.  相似文献   

19.
The importance of termites as decomposers in tropical forests has long been recognized. Studies on the richness and diversity of termite species and their ecological function have flourished in more recent times, but these have been mostly conducted in a thin stratum within a standing man’s reach. Our aims were to evaluate the specific richness and composition of the termite assemblage in the canopy of a tropical rainforest and to determine its originality with respect to the sympatric ground-level fauna. We conducted systematic searches for canopy termites, together with conventional sampling of the sympatric ground-level fauna, in the San Lorenzo forest, Panama. We hypothesized that (1) the canopy accommodates two categories of wood-feeding termites (long-distance foragers and small-colony “one-piece” species) and possibly soil-feeders in suspended soil-like habitats; (2) due to the abundance of soil-feeders, the overall diversity of the ground fauna is higher than that of the canopy; (3) differences in microclimate and resource accessibility favour vertical stratification among wood-feeders. Sixty-three canopy samples yielded ten species of termites, all wood-feeders. Five of these were not found at ground level, although a total of 243 ground samples were collected, representing 29 species. In addition to long-distance foragers (Microcerotermes and Nasutitermes spp.) and small-colony termites (mostly Kalotermitidae), the canopy fauna included Termes hispaniolae, a wood-feeding Termitidae from an allegedly soil-feeding genus, living in large dead branches. Soil-feeders were absent from the canopy, probably because large epiphytes were scarce. As predicted, the ground fauna was much richer than that of the canopy, but the species richness of both habitats was similar when only wood-feeders were considered. Vertical stratification was strongly marked among wood-feeders, as all common species, apart from the arboreal-nesting Microcerotermes arboreus, could unequivocally be assigned to either a ground or a canopy group. The canopy, therefore, contributes significantly to the total species richness of the termite assemblage, and the diversity, abundance and ecological importance of canopy termites in tropical rainforests may be higher than previously recognized.Electronic Supplementary Material Supplementary material is available to authorized users in the online version of this article at .  相似文献   

20.
Animal-microbe co-evolution and symbiosis are broadly distributed across the animal kingdom. Insects form a myriad of associations with microbes ranging from vectoring of pathogens to intracellular, mutualistic relationships. Lower termites are key models for insect-microbe symbiosis because of the diversity, complexity and functionality of their unique tripartite symbiosis. This collaboration allows termites to live on a diet of nitrogen-poor lignocellulose. Recent functional investigations of lignocellulose digestion in lower termites have primarily focused on the contributions of the eukaryotic members of the termite holobiont (termite and protist). Here, using multiple antimicrobial treatments, we induced differing degrees of dysbiosis in the termite gut, leading to variably altered symbiont abundance and diversity, and lignocellulolytic capacity. Although protists are clearly affected by antimicrobial treatments, our findings provide novel evidence that the removal of distinct groups of bacteria partially reduces, but does not abolish, the saccharolytic potential of the termite gut holobiont. This is specifically manifested by reductions of 23–47% and 30–52% in glucose and xylose yields respectively from complex lignocellulose. Thus, all members of the lower termite holobiont (termite, protist and prokaryotes) are involved in the process of efficient, sustained lignocellulase activity. This unprecedented quantification of the relative importance of prokaryotes in this system emphasizes the collaborative nature of the termite holobiont, and the relevance of lower termites as models for inter-domain symbioses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号