首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8篇
  免费   0篇
  2021年   1篇
  2019年   2篇
  2015年   1篇
  2011年   1篇
  2010年   1篇
  2009年   1篇
  2007年   1篇
排序方式: 共有8条查询结果,搜索用时 62 毫秒
1
1.
A unicellular cyanobacterium, Synechococcus nidulans (Pringsheim) Komárek, was isolated from paddy-fields and applied in the biotransformation experiment of hydrocortisone (1). This strain has not been previously tested for steroid bioconversion. Fermentation was carried out in BG-11 medium supplemented with 0.05% substrate at 25°C for 14 days of incubation. The products obtained were chromatographically purified followed by their characterization using spectroscopic methods, 11β,17β-dihydroxyandrost-4-en-3-one (2), 11β-hydroxyandrost-4-en-3,17-dione (3), and androst-4-ene-3,17-dione (4) were the main bioproducts in the hydrocortisone bioconversion. The observed bioreaction characteristics were the side chain degradation of the substrate to prepare compounds (2) and (3) following the 11β-dehydroxylation for accumulation of the compound (4). Time course study showed the accumulation of the product (2) from the second day of the fermentation and compounds (3) and (4) from the third day. All the metabolites reached their maximum concentration in seven days. Cyanobacterial 16S rRNA gene was also amplified by PCR. Sequences were amplified using the universal prokaryotic primers which amplify a ~400-bp region of the 16S rRNA gene. PCR products were sequenced to confirm their authenticity as 16S rRNA gene of cyanobacteria. The result of PCR blasted with other sequenced cyanobacteria in NCBI showed 99% identity to the 16S small subunit rRNA of seven Synechococcus species.  相似文献   
2.
Essential roles of microalgae during the tertiary treatment of municipal wastewater have been proven. In order to avoid wash out of the biomass and also modify the quality of the treated wastewater; some techniques such as cell immobilization have been developed. To do so, in this study four samples from two species of microalgae (Chlorella vulgaris and Chlamydomonas sp.) were determined and confirmed by taxonomic identification. The samples were immobilized in calcium alginate beads. Within 10 days the amounts of nitrate (No3?-N) and orthophosphate (Po43?-P) were measured to calculate the removal efficacy for each individual sample. Based on the standard methods, the amount of nitrate and orthophosphate were determined every 3 days within 10 days. The results indicate that immobilized microalgae are able to remove the nutrients and reduce the amount of nitrate and orthophosphate, significantly. Furthermore, the C. vulgaris (YG02) was the best species in this experience with 72% and 99% of reduction in the amount of nitrate and orthophosphate, respectively.  相似文献   
3.
International Journal of Peptide Research and Therapeutics - Recombinant reteplase is the truncated form of tissue plasminogen activator. Signal peptides play a pivotal role in the secretion of...  相似文献   
4.
International Journal of Peptide Research and Therapeutics - Escherichia coli is one of the simplest hosts which is widely being used to express heterologous proteins. However, without appropriate...  相似文献   
5.
The biotransformation of several monoterpenes by the locally isolated unicellular microalga, Oocystis pusilla was investigated. The metabolites were identified by thin layer chromatography and GC/MS. The results showed that O. pusilla had the ability to reduce the C=C double bond in (+)-carvone to yield trans-dihydrocarvone and traces of cis-dihydrocarvone. O. pusilla also converted (+)-limonene to trans-carveol, as the main product, and yielded carvone and trans-limonene oxide. Furthermore, (−)-linalool was converted to trans-furanoid and trans-pyranoid linalool oxide, thymol was converted to thymoquinone, (−)-carveol was converted to carvone and trans-dihydrocarvone, (−)-menthone and (+)-pulegone were converted to menthol, (L)-citronellal was converted to citronellol, and (+)-β-pinene was converted to trans-pinocarveol.  相似文献   
6.
A unicellular cyanobacterium,Chroococcus dispersus (Keissl.) Lemmermann, was isolated from paddy-field and tested in biotransformation experiments of hydrocortisone (compound 1). This strain has not been previously examined for steroid substance modification. Fermentation was carried out in BG-11 medium supplemented with 0.05% substrate at 25 °C for seven days incubation. The metabolites were chromatographically purified and characterised using spectroscopic methods. The fermentation yielded 11β,17α,20β,21-tetrahydroxypregn-4-en-3-one (compound 2), 11β,17β-dihydroxyandrost-4-en-3,17-dione (compound 3), and 11β-hydroxyandrost-4-en-3,17-dione (compound 4). Bioreaction characteristics observed were 20-ketone reduction for accumulation of compound 2 and side chain degradation of the substrate to give compounds 3 and 4. Time course study showed the accumulation of the product 2 from the second day of the fermentation and product 3 as well as product 4 from the third day. All the metabolites reached their maximum concentration in seven days. Aeration and continuous light or light duration (16/8 hours light/dark) have no effect on the transformation yield. Optimum concentration of the substrate, which gave maximum bioconversion efficiency, was 0.5 mg ml?1 in the transformation experiment. Growth was not influenced by the addition of steroid substrate. Biotransformation was completely inhibited when steroid concentration was above 2.0 mg ml?1.  相似文献   
7.
The clinical applications of therapeutic enzymes are often limited due to their immunogenicity. B-cell epitope removal is an effective approach to solve this obstacle. The identification of hot spot epitopic residues is a critical step in the removal of protein B-cell epitope. Hereof, computational approaches are a suitable alternative to costly and labor-intensive experimental approaches. Arginine deiminase, a Mycoplasma arginine-catabolizing enzyme, is in the clinical trial for treating arginine auxotrophic cancers, especially hepatocellular carcinomas and melanomas through depleting plasma arginine and causing cell starvation. In this study, arginine deiminase from Mycoplasma hominis (MhADI) was computationally analyzed for recognizing and locating its immune-reactive regions. The 3D structure of the bioactive form of MhADI was modeled. The B-cell epitope mapping of protein was performed using various servers with different algorithms. Six segments: 31–40, 48–55, 131–140, 196–206, 294–314, and 331–344 were predicted to be the consensus immunogenic regions. The modification of epitopic hot spot residue was performed to reduce immune-reactiveness. The hot spot residue was selected considering a high B-cell epitope score, convexity index, surface accessibility, flexibility, and hydrophilicity. The structure stability of native and mutant proteins was evaluated through molecular dynamics simulation. The E304L mutein was suggested as a lower antigenic and stable enzyme derivative.  相似文献   
8.
Lipases are an important class of enzymes which catalyze the hydrolysis of long chain triglycerides and constitute the most prominent group of biocatalysts for biotechnological applications. There are a number of lipases, produced by some halophilic microorganisms. In this study, some lipase producing bacteria from the Maharla salt lake located in south of Iran were isolated. All isolates were screened for true lipase activity on plates containing olive oil. The lipase activity was measured using titrimetric methods. Among thirty three isolates, thirteen strains demonstrating orange zone around colonies under UV light, were selected for identification using the molecular methods and some morphological characteristics. The bacterium Bacillus vallismortis BCCS 007 with 3.41 ± 0.14 U/mL lipase activity was selected as the highest lipase producing isolate. This is the first report of isolation and molecular identification of lipase producing bacteria from the Maharla lake.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号