首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   151篇
  免费   16篇
  国内免费   1篇
  2021年   6篇
  2020年   1篇
  2018年   3篇
  2017年   6篇
  2016年   7篇
  2015年   5篇
  2014年   6篇
  2013年   6篇
  2012年   9篇
  2011年   9篇
  2010年   10篇
  2009年   9篇
  2008年   8篇
  2007年   9篇
  2006年   4篇
  2005年   5篇
  2004年   3篇
  2003年   7篇
  2002年   5篇
  2001年   6篇
  2000年   1篇
  1999年   2篇
  1998年   12篇
  1997年   6篇
  1996年   4篇
  1995年   1篇
  1994年   2篇
  1993年   6篇
  1990年   1篇
  1987年   1篇
  1983年   1篇
  1982年   1篇
  1981年   1篇
  1979年   1篇
  1978年   1篇
  1977年   1篇
  1975年   2篇
排序方式: 共有168条查询结果,搜索用时 15 毫秒
1.
We have broadly defined the DNA regions regulating esterase6 activity in several life stages and tissue types of D. melanogaster using P- element-mediated transformation of constructs that contain the esterase6 coding region and deletions or substitutions in 5' or 3' flanking DNA. Hemolymph is a conserved ancestral site of EST6 activity in Drosophila and the primary sequences regulating its activity lie between -171 and -25 bp relative to the translation initiation site: deletion of these sequences decrease activity approximately 20-fold. Hemolymph activity is also modulated by four other DNA regions, three of which lie 5' and one of which lies 3' of the coding region. Of these, two have positive and two have negative effects, each of approximately twofold. Esterase6 activity is present also in two male reproductive tract tissues; the ejaculatory bulb, which is another ancestral activity site, and the ejaculatory duct, which is a recently acquired site within the melanogaster species subgroup. Activities in these tissues are at least in part independently regulated: activity in the ejaculatory bulb is conferred by sequences between -273 and -172 bp (threefold decrease when deleted), while activity in the ejaculatory duct is conferred by more distal sequences between -844 and -614 bp (fourfold decrease when deleted). The reproductive tract activity is further modulated by two additional DNA regions, one in 5' DNA (-613 to -284 bp; threefold decrease when deleted) and the other in 3' DNA (+1860 to +2731 bp; threefold decrease when deleted) that probably overlaps the adjacent esteraseP gene. Collating these data with previous studies suggests that expression of EST6 in the ancestral sites is mainly regulated by conserved proximal sequences while more variable distal sequences regulate expression in the acquired ejaculatory duct site.   相似文献   
2.
Immunoglobulins are encoded by a large multigene system that undergoes somatic rearrangement and additional genetic change during the development of immunoglobulin-producing cells. Inducible antibody and antibody-like responses are found in all vertebrates. However, immunoglobulin possessing disulfide-bonded heavy and light chains and domain-type organization has been described only in representatives of the jawed vertebrates. High degrees of nucleotide and predicted amino acid sequence identity are evident when the segmental elements that constitute the immunoglobulin gene loci in phylogenetically divergent vertebrates are compared. However, the organization of gene loci and the manner in which the independent elements recombine (and diversify) vary markedly among different taxa. One striking pattern of gene organization is the "cluster type" that appears to be restricted to the chondrichthyes (cartilaginous fishes) and limits segmental rearrangement to closely linked elements. This type of gene organization is associated with both heavy- and light-chain gene loci. In some cases, the clusters are "joined" or "partially joined" in the germ line, in effect predetermining or partially predetermining, respectively, the encoded specificities (the assumption being that these are expressed) of the individual loci. By relating the sequences of transcribed gene products to their respective germ-line genes, it is evident that, in some cases, joined-type genes are expressed. This raises a question about the existence and/or nature of allelic exclusion in these species. The extensive variation in gene organization found throughout the vertebrate species may relate directly to the role of intersegmental (V<==>D<==>J) distances in the commitment of the individual antibody-producing cell to a particular genetic specificity. Thus, the evolution of this locus, perhaps more so than that of others, may reflect the interrelationships between genetic organization and function.   相似文献   
3.
4.
Interleukin-17A (IL-17A) is a key cytokine modulating the course of inflammatory diseases. Whereas effector functions of IL-17A like induction of antimicrobial peptides and leukocyte infiltration could clearly be demonstrated for peripheral organs, CNS specific effects are not well defined and appear controversial. To further clarify the functional significance of IL-17A in the CNS, we generated a transgenic mouse line with astrocyte-restricted expression of the IL-17A gene. GFAP/IL-17A transgenic mice develop normally and do not show any signs of neurological dysfunction. However, histological characterization revealed astrocytosis and activation of microglia. Demyelination, neurodegeneration or prominent tissue damage was not observed but a vascular pathology mimicking microangiopathic features was evident. Histological and flow cytometric analysis demonstrated the absence of parenchymal infiltration of immune cells into the CNS of GFAP/IL-17A transgenic mice. In GFAP/IL-17A mice, LPS-induced endotoxemia led to a more pronounced microglial activation with expansion of a distinct CD45high/CD11b+ population and increased induction of proinflammatory cytokines compared with controls. Our data argues against a direct role of IL-17A in mediating tissue damage during neuroinflammation. More likely IL-17A acts as a modulating factor in the network of induced cytokines. This novel mouse model will be a very useful tool to further characterize the role of IL-17A in neuroinflammatory disease models.  相似文献   
5.
6.
Schistosomiasis vector snails are subjected to extreme seasonal changes, particularly in ephemeral rivers and lentic waterbodies. In the tropics, aestivation is one of the adaptive strategies for survival and is used by snails in times of extremely high temperatures and desiccation. Aestivation therefore plays an important role in maintaining the transmission of schistosomiasis. This review assesses the possible impacts of climate change on the temporal and spatial distribution of schistosomiasis-transmitting snails with special emphasis on aestivation, and discusses the effect of schistosome infection on aestivation ability. The impacts of parasite development on snails, as well as physiological changes, are discussed with reference to schistosomiasis transmission. This review shows that schistosome-infected snails have lower survival rates during aestivation, and that those that survive manage to get rid of the infection. In general, snail aestivation ability is poor and survival chances diminish with time. Longer dry periods result in fewer, as well as uninfected, snails. However, the ability of the surviving snails to repopulate the habitats is high.  相似文献   
7.
Pattern recognition receptors (PRRs) play a key role in plant and animal innate immunity. PRR binding of their cognate ligand triggers a signaling network and activates an immune response. Activation of PRR signaling must be controlled prior to ligand binding to prevent spurious signaling and immune activation. Flagellin perception in Arabidopsis through FLAGELLIN‐SENSITIVE 2 (FLS2) induces the activation of mitogen‐activated protein kinases (MAPKs) and immunity. However, the precise molecular mechanism that connects activated FLS2 to downstream MAPK cascades remains unknown. Here, we report the identification of a differentially phosphorylated MAP kinase kinase kinase that also interacts with FLS2. Using targeted proteomics and functional analysis, we show that MKKK7 negatively regulates flagellin‐triggered signaling and basal immunity and this requires phosphorylation of MKKK7 on specific serine residues. MKKK7 attenuates MPK6 activity and defense gene expression. Moreover, MKKK7 suppresses the reactive oxygen species burst downstream of FLS2, suggesting that MKKK7‐mediated attenuation of FLS2 signaling occurs through direct modulation of the FLS2 complex.  相似文献   
8.
The inflammatory responses in many cell types are reduced by noradrenaline (NA) binding to beta-adrenergic receptors. We previously demonstrated that cortical inflammatory responses to aggregated amyloid beta (Abeta) are increased if NA levels were first depleted by lesioning locus ceruleus (LC) noradrenergic neurons, which replicates the loss of LC occurring in Alzheimer's disease. To examine the molecular basis for increased responses, we used the selective neurotoxin DSP4 to lesion the LC, and then examined levels of putative anti-inflammatory molecules. Inflammatory responses were achieved by injection of aggregated Abeta1-42 peptide and IL-1beta into frontal cortex, which induced neuronal inducible nitric oxide synthase (iNOS) and microglial IL-1beta expression. DSP4-treatment reduced basal levels of nuclear factor kappa B (NF-kappaB) inhibitory IkappaB proteins, and of heat shock protein (HSP)70. Inflammatory responses were prevented by co-injection (ibuprofen or ciglitzaone) or oral administration (pioglitazone) of peroxisome proliferator-activated receptor gamma (PPARgamma) agonists. Treatment with PPARgamma agonists restored IkappaBalpha, IkappaBbeta, and HSP70 levels to values equal or above those observed in control animals, and reduced activation of cortical NF-kappaB. These results suggest that noradrenergic depletion reduces levels of anti-inflammatory molecules which normally limit cortical responses to Abeta, and that PPARgamma agonists can reverse that effect. These findings suggest one mechanism by which PPARgamma agonists could provide benefit in neurological diseases having an inflammatory component.  相似文献   
9.
We examined the effect of pioglitazone, a peroxisome proliferator-activated receptor-gamma (PPARgamma) agonist of the thiazolidinedione class, on dopaminergic nerve cell death and glial activation in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of Parkinson's disease. The acute intoxication of C57BL/6 mice with MPTP led to nigrostriatal injury, as determined by tyrosine hydroxylase (TH) immunocytochemistry, and HPLC detection of striatal dopamine and metabolites. Damage to the nigrostriatal dopamine system was accompanied by a transient activation of microglia, as determined by macrophage antigen-1 (Mac-1) and inducible nitric oxide synthase (iNOS) immunoreactivity, and a prolonged astrocytic response. Orally administered pioglitazone (approximately 20 mg/kg/day) attenuated the MPTP-induced glial activation and prevented the dopaminergic cell loss in the substantia nigra pars compacta (SNpc). In contrast, there was little reduction of MPTP-induced dopamine depletion, with no detectable effect on loss of TH immunoreactivity and glial response in the striatum of pioglitazone-treated animals. Low levels of PPARgamma expression were detected in the ventral mesencephalon and striatum, and were unaffected by MPTP or pioglitazone treatment. Since pioglitazone affects primarily the SNpc in our model, different PPARgamma-independent mechanisms may regulate glial activation in the dopaminergic terminals compared with the dopaminergic cell bodies after acute MPTP intoxication.  相似文献   
10.
It is now well accepted that inflammatory events contribute to the pathogenesis of numerous neurological disorders, including multiple sclerosis (MS), Alzheimer's disease (AD), Parkinson's disease, and AID's dementia. Whereas inflammation in the periphery is subject to rapid down regulation by increases in anti-inflammatory molecules and the presence of scavenging soluble cytokine receptors, the presence of an intact blood-brain barrier may limit a similar autoregulation from occurring in brain. Mechanisms intrinsic to the brain may provide additional immunomodulatory functions, and whose dysregulation could contribute to increased inflammation in disease. The findings that noradrenaline (NA) reduces cytokine expression in microglial, astroglial, and brain endothelial cells in vitro, and that modification of the noradrenergic signaling system occurs in some brain diseases having an inflammatory component, suggests that NA could act as an endogenous immunomodulator in brain. Furthermore, accumulating studies indicate that modification of the noradrenergic signaling system occurs in some neurodiseases. In this article, we will briefly review the evidence that NA can modulate inflammatory gene expression in vitro, summarize data supporting a similar immunomodulatory role in brain, and present recent data implicating a role for NA in attenuating the cortical inflammatory response to beta amyloid protein.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号