首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   179篇
  免费   39篇
  国内免费   1篇
  2021年   5篇
  2020年   2篇
  2019年   1篇
  2018年   3篇
  2017年   5篇
  2016年   6篇
  2015年   9篇
  2014年   7篇
  2013年   6篇
  2012年   14篇
  2011年   12篇
  2010年   12篇
  2009年   15篇
  2008年   10篇
  2007年   13篇
  2006年   6篇
  2005年   3篇
  2004年   3篇
  2003年   9篇
  2002年   7篇
  2001年   5篇
  2000年   4篇
  1999年   4篇
  1998年   11篇
  1997年   9篇
  1996年   6篇
  1995年   4篇
  1994年   3篇
  1993年   6篇
  1992年   2篇
  1991年   4篇
  1990年   2篇
  1988年   2篇
  1987年   1篇
  1983年   1篇
  1982年   1篇
  1981年   1篇
  1979年   1篇
  1978年   1篇
  1977年   1篇
  1975年   2篇
排序方式: 共有219条查询结果,搜索用时 78 毫秒
1.
Summary Wilson disease (WD) is an autosomal recessive disorder of copper metabolism. A minimum recombinant analysis using D13S22, ESD, RB1, D13S31, D13S55, D13S26, D13S39, and D13S12, all localized at 13q14-q22, has been carried out in 20WD families of Northwest-European origin. No inconsistencies have been observed with respect to locus order or location of the WD locus (WND) compared with previous linkage studies. D13S31 was mapped as the closest marker proximal to WND, whereas D13S55 and D13S26 were mapped as the closest markers distal to WND. We have identified a crossover between WND and D13S31 in one family and a crossover between WND and D13S55 in another. These crossover sites can be used as reference points for new chromosome 13q14-q21 markers, and are therefore important for a more accurate mapping of the WD locus.  相似文献   
2.
Selected strains of Listeria spp. were challenged against a variety of bacteriophages usually employed for phage typing. The resistant mutants derived were characterized by the loss of sensitivity to defined groups of phages. When different phages were used in succession multiple mutants could be obtained. They eventually became insensitive to all phages employed. Our results indicate the possibility of shifting phagovars among Listeria strains grown in mixed culture, due to the potential action of free bacteriophages.  相似文献   
3.
We have broadly defined the DNA regions regulating esterase6 activity in several life stages and tissue types of D. melanogaster using P- element-mediated transformation of constructs that contain the esterase6 coding region and deletions or substitutions in 5' or 3' flanking DNA. Hemolymph is a conserved ancestral site of EST6 activity in Drosophila and the primary sequences regulating its activity lie between -171 and -25 bp relative to the translation initiation site: deletion of these sequences decrease activity approximately 20-fold. Hemolymph activity is also modulated by four other DNA regions, three of which lie 5' and one of which lies 3' of the coding region. Of these, two have positive and two have negative effects, each of approximately twofold. Esterase6 activity is present also in two male reproductive tract tissues; the ejaculatory bulb, which is another ancestral activity site, and the ejaculatory duct, which is a recently acquired site within the melanogaster species subgroup. Activities in these tissues are at least in part independently regulated: activity in the ejaculatory bulb is conferred by sequences between -273 and -172 bp (threefold decrease when deleted), while activity in the ejaculatory duct is conferred by more distal sequences between -844 and -614 bp (fourfold decrease when deleted). The reproductive tract activity is further modulated by two additional DNA regions, one in 5' DNA (-613 to -284 bp; threefold decrease when deleted) and the other in 3' DNA (+1860 to +2731 bp; threefold decrease when deleted) that probably overlaps the adjacent esteraseP gene. Collating these data with previous studies suggests that expression of EST6 in the ancestral sites is mainly regulated by conserved proximal sequences while more variable distal sequences regulate expression in the acquired ejaculatory duct site.   相似文献   
4.
Immunoglobulins are encoded by a large multigene system that undergoes somatic rearrangement and additional genetic change during the development of immunoglobulin-producing cells. Inducible antibody and antibody-like responses are found in all vertebrates. However, immunoglobulin possessing disulfide-bonded heavy and light chains and domain-type organization has been described only in representatives of the jawed vertebrates. High degrees of nucleotide and predicted amino acid sequence identity are evident when the segmental elements that constitute the immunoglobulin gene loci in phylogenetically divergent vertebrates are compared. However, the organization of gene loci and the manner in which the independent elements recombine (and diversify) vary markedly among different taxa. One striking pattern of gene organization is the "cluster type" that appears to be restricted to the chondrichthyes (cartilaginous fishes) and limits segmental rearrangement to closely linked elements. This type of gene organization is associated with both heavy- and light-chain gene loci. In some cases, the clusters are "joined" or "partially joined" in the germ line, in effect predetermining or partially predetermining, respectively, the encoded specificities (the assumption being that these are expressed) of the individual loci. By relating the sequences of transcribed gene products to their respective germ-line genes, it is evident that, in some cases, joined-type genes are expressed. This raises a question about the existence and/or nature of allelic exclusion in these species. The extensive variation in gene organization found throughout the vertebrate species may relate directly to the role of intersegmental (V<==>D<==>J) distances in the commitment of the individual antibody-producing cell to a particular genetic specificity. Thus, the evolution of this locus, perhaps more so than that of others, may reflect the interrelationships between genetic organization and function.   相似文献   
5.
6.
A set of 22 phages of Listeria species (listeriaphages) (21 temperate and 1 virulent) were compared on the basis of morphology and protein composition. All 22 phages had icosahedral heads and exhibited either contractile or noncontractile tails. They represented two different morphotypes. Twenty phages belonged to the Siphoviridae family and could be differentiated only on the basis of tail length. Accordingly, they could be assigned to previously defined listeriaphage species. Two other phages were classified as members of the Myoviridae family, one of which (A511) should be regarded as a new species. It was found to be substantially different from all other known listeriaphages. All phages exhibited typical protein profiles, which were determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and subsequent laser densitometrical analysis of the gels. It was then possible to distinguish eight protein subgroups on the basis of unique protein patterns. This classification corresponds well to the previous groupings based on host range. Most of the phages revealed two or three major proteins ranging from 21 to 24 kDa and 30 to 36 kDa. In addition, at least 10 minor proteins could be observed for each phage. Our results indicate that the major proteins are structural proteins of the capsid and tail, and the protein band ranging from 30 to 35 kDa could clearly be assigned to the proteins of the phage capsid.  相似文献   
7.
Schistosomiasis vector snails are subjected to extreme seasonal changes, particularly in ephemeral rivers and lentic waterbodies. In the tropics, aestivation is one of the adaptive strategies for survival and is used by snails in times of extremely high temperatures and desiccation. Aestivation therefore plays an important role in maintaining the transmission of schistosomiasis. This review assesses the possible impacts of climate change on the temporal and spatial distribution of schistosomiasis-transmitting snails with special emphasis on aestivation, and discusses the effect of schistosome infection on aestivation ability. The impacts of parasite development on snails, as well as physiological changes, are discussed with reference to schistosomiasis transmission. This review shows that schistosome-infected snails have lower survival rates during aestivation, and that those that survive manage to get rid of the infection. In general, snail aestivation ability is poor and survival chances diminish with time. Longer dry periods result in fewer, as well as uninfected, snails. However, the ability of the surviving snails to repopulate the habitats is high.  相似文献   
8.
Pattern recognition receptors (PRRs) play a key role in plant and animal innate immunity. PRR binding of their cognate ligand triggers a signaling network and activates an immune response. Activation of PRR signaling must be controlled prior to ligand binding to prevent spurious signaling and immune activation. Flagellin perception in Arabidopsis through FLAGELLIN‐SENSITIVE 2 (FLS2) induces the activation of mitogen‐activated protein kinases (MAPKs) and immunity. However, the precise molecular mechanism that connects activated FLS2 to downstream MAPK cascades remains unknown. Here, we report the identification of a differentially phosphorylated MAP kinase kinase kinase that also interacts with FLS2. Using targeted proteomics and functional analysis, we show that MKKK7 negatively regulates flagellin‐triggered signaling and basal immunity and this requires phosphorylation of MKKK7 on specific serine residues. MKKK7 attenuates MPK6 activity and defense gene expression. Moreover, MKKK7 suppresses the reactive oxygen species burst downstream of FLS2, suggesting that MKKK7‐mediated attenuation of FLS2 signaling occurs through direct modulation of the FLS2 complex.  相似文献   
9.
Clostridium perfringens commonly occurs in food and feed, can produce an enterotoxin frequently implicated in food-borne disease, and has a substantial negative impact on the poultry industry. As a step towards new approaches for control of this organism, we investigated the cell wall lysis system of C. perfringens bacteriophage 3626, whose dual lysis gene cassette consists of a holin gene and an endolysin gene. Hol3626 has two membrane-spanning domains (MSDs) and is a group II holin. A positively charged beta turn between the two MSDs suggests that both the amino terminus and the carboxy terminus of Hol3626 might be located outside the cell membrane, a very unusual holin topology. Holin function was experimentally demonstrated by using the ability of the holin to complement a deletion of the heterologous phage λ S holin in λΔSthf. The endolysin gene ply3626 was cloned in Escherichia coli. However, protein synthesis occurred only when bacteria were supplemented with rare tRNAArg and tRNAIle genes. Formation of inclusion bodies could be avoided by drastically lowering the expression level. Amino-terminal modification by a six-histidine tag did not affect enzyme activity and enabled purification by metal chelate affinity chromatography. Ply3626 has an N-terminal amidase domain and a unique C-terminal portion, which might be responsible for the specific lytic range of the enzyme. All 48 tested strains of C. perfringens were sensitive to the murein hydrolase, whereas other clostridia and bacteria belonging to other genera were generally not affected. This highly specific activity towards C. perfringens might be useful for novel biocontrol measures in food, feed, and complex microbial communities.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号