首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   82篇
  免费   11篇
  2016年   2篇
  2015年   4篇
  2014年   2篇
  2013年   6篇
  2012年   5篇
  2011年   3篇
  2010年   4篇
  2009年   2篇
  2008年   9篇
  2007年   3篇
  2006年   2篇
  2005年   1篇
  2004年   4篇
  2003年   2篇
  2001年   7篇
  2000年   4篇
  1999年   6篇
  1998年   5篇
  1997年   2篇
  1996年   4篇
  1995年   1篇
  1994年   2篇
  1993年   2篇
  1991年   2篇
  1990年   2篇
  1989年   1篇
  1987年   1篇
  1984年   1篇
  1982年   2篇
  1978年   1篇
  1975年   1篇
排序方式: 共有93条查询结果,搜索用时 265 毫秒
1.
Titration of Asp-85, the proton acceptor and part of the counterion in bacteriorhodopsin, over a wide pH range (2-11) leads us to the following conclusions: 1) Asp-85 has a complex titration curve with two values of pKa; in addition to a main transition with pKa = 2.6 it shows a second inflection point at high pH (pKa = 9.7 in 150-mM KCl). This complex titration behavior of Asp-85 is explained by interaction of Asp-85 with an ionizable residue X'. As follows from the fit of the titration curve of Asp-85, deprotonation of X' increases the proton affinity of Asp-85 by shifting its pKa from 2.6 to 7.5. Conversely, protonation of Asp-85 decreases the pKa of X' by 4.9 units, from 9.7 to 4.8. The interaction between Asp-85 and X' has important implications for the mechanism of proton transfer. In the photocycle after the formation of M intermediate (and protonation of Asp-85) the group X' should release a proton. This deprotonated state of X' would stabilize the protonated state of Asp-85.2) Thermal isomerization of the chromophore (dark adaptation) occurs on transient protonation of Asp-85 and formation of the blue membrane. The latter conclusion is based on the observation that the rate constant of dark adaptation is directly proportional to the fraction of blue membrane (in which Asp-85 is protonated) between pH 2 and 11. The rate constant of isomerization is at least 10(4) times faster in the blue membrane than in the purple membrane. The protonated state of Asp-85 probably is important for the catalysis not only of all-trans <=> 13-cis thermal isomerization during dark adaptation but also of the reisomerization of the chromophore from 13-cis to all-trans configuration during N-->O-->bR transition in the photocycle. This would explain why Asp-85 stays protonated in the N and O intermediates.  相似文献   
2.
Fourteen elite sorghum lines were evaluated for their resistance to Striga hermonthica at three locations in Nigeria and Mali. Results showed that many of the lines especially MALISOR 84-1, SAMSORG 41, 97-SB-F5DT-64 (Keninkédié) and the check SRN 39 remained resistant to Striga in all locations with low emerged Striga counts, while SAMSORG 14 had the highest Striga infestation in all locations. Considerable variation in reaction to Striga infestation was observed on Séguètana, 97-SB-F5DT-63 (Wasa), 97-SB-F5DT-65, CMDT 38, CMDT 39 and CMDT 45 which were susceptible to Striga at Samaru, Nigeria but were resistant to Striga at both locations in Mali. Based on low Striga resistance and high grain yield, lines MALISOR 84-1, SAMSORG 41, 97-SB-F5DT-64, 97-SB-F5DT-65, CMDT 39 and SAMSORT 14 have been nominated for wider evaluation across more West African countries.  相似文献   
3.
The effect of temperature, nutrition, and density stresses on phenotypic and genetic variation in morphological traits (thorax length, wing length, number of sternopleural and abdominal bristles, and number of arista branches) was examined in Drosophila melanogaster. In addition, the effect of stress on developmental stability measured as fluctuation asymmetry of bilateral traits was analyzed. All of the stresses were shown to increase phenotypic variation and fluctuating asymmetry of bilateral traits. Genetic variation of morphometric traits estimated using the isofemale line technique was higher under stressful than under normal conditions. Biotic and abiotic stresses were similar in their effect on phenotypic and genetic variation. The effect of stress on variability of morphometric traits was generally higher than on that of meristic traits. Possible causes of the increase of genetic variation under stress are discussed.  相似文献   
4.

Background  

Human serum paraoxonase 1 (PON1) plays a major role in the metabolism of several organophosphorus compounds. The enzyme is encoded by the polymorphic gene PON1, located on chromosome 7q21.3. Aiming to identify genetic variations related to the risk of developing brain tumors, we investigated the putative association between common nonsynonymous PON1 polymorphisms and the risk of developing astrocytoma and meningioma.  相似文献   
5.
The use of graduated compression stockings (GCS) in sport has been increasing in the last years due to their potential positive effects for athletes. However, there is little evidence to support whether these types of garments actually improve cardiorespiratory performance. The aim of this study was to examine the cardiorespiratory responses of GCS during running after three weeks of regular use. Twenty recreational runners performed three tests on different days: test 1) – a 5-min maximal effort run in order to determine the participants’ maximal aerobic speed; and tests 2) and 3) – a fatigue running test of 30 minutes at 80% of their maximal aerobic speed with either GCS or PLACEBO stockings at random. Cardiorespiratory parameters (minute ventilation, heart rate, relative oxygen consumption, relative carbon dioxide production, ventilatory equivalents for oxygen and carbon dioxide, and oxygen pulse) were measured. Before each test in the laboratory, the participants trained with the randomly assigned stockings (GCS or PLACEBO) for three weeks. No significant differences between GCS and PLACEBO were found in any of the cardiorespiratory parameters. In conclusion, the present study provides evidence that running with GCS for three weeks does not influence cardiorespiratory parameters in recreational runners.  相似文献   
6.
Similarly to bacteriorhodopsin, proteorhodopsin that normally contains all-trans and 13-cis retinal is transformed at low pH to a species containing 9-cis retinal under continuous illumination at lambda > 530 nm. This species, absorbing around 430 nm, returns thermally in tens of minutes to initial pigment and can be reconverted also with blue-light illumination. The yield of the 9-cis species is negligibly small at neutral pH but increases manyfold (>100) at acid pH with a pK(a) of 2.6. This indicates that protonation of acidic group(s) alters the photoreaction pathway that leads normally to all-trans --> 13-cis isomerization. In the D97N mutant, in which one of the two acidic groups in the vicinity of the retinal Schiff base is not ionizable, the yield of 9-cis species at low pH shows a pH dependence similar to that in the wild-type but with a somewhat increased pK(a) of 3.3. In contrast to this relatively minor effect, replacement of the other acidic group, Asp227, with Asn results in a remarkable, more than 50-fold, increase in the yield of the light-induced formation of 9-cis species in the pH range 4-6. It appears that protonation of Asp227 at low pH is what causes the dramatic increase in the yield of the 9-cis species in wild-type proteorhodopsin. We conclude that the photoisomerization pathways in proteorhodopsin to 13-cis or 9-cis photoproducts are controlled by the charge state of Asp227.  相似文献   
7.
Tyrosine-83, a residue which is conserved in all halobacterial retinal proteins, is located at the extracellular side in helix C of bacteriorhodopsin. Structural studies indicate that its hydroxyl group is hydrogen bonded to Trp189 and possibly to Glu194, a residue which is part of the proton release complex (PRC) in bacteriorhodopsin. To elucidate the role of Tyr83 in proton transport, we studied the Y83F and Y83N mutants. The Y83F mutation causes an 11 nm blue shift of the absorption spectrum and decreases the size of the absorption changes seen upon dark adaptation. The light-induced fast proton release, which accompanies formation of the M intermediate, is observed only at pH above 7 in Y83F. The pK(a) of the PRC in M is elevated in Y83F to about 7.3 (compared to 5.8 in WT). The rate of the recovery of the initial state (the rate of the O --> BR transition) and light-induced proton release at pH below 7 is very slow in Y83F (ca. 30 ms at pH 6). The amount of the O intermediate is decreased in Y83F despite the longer lifetime of O. The Y83N mutant shows a similar phenotype in respect to proton release. As in Y83F, the recovery of the initial state is slowed several fold in Y83N. The O intermediate is not seen in this mutant. The data indicate that the PRC is functional in Y83F and Y83N but its pK(a) in M is increased by about 1.5 pK units compared to the WT. This suggests that Tyr83 is not the main source for the proton released upon M formation in the WT; however, Tyr83 is involved in the proton release affecting the pK(a) of the PRC in M and the rate of proton transport from Asp85 to PRC during the O --> bR transition. Both the Y83F and the Y83N mutations lead to a greatly decreased functionality of the pigment at high pH because most of the pigment is converted into the inactive P480 species, with a pK(a) 8-9.  相似文献   
8.
Xanthorhodopsin of the extremely halophilic bacterium Salinibacter ruber represents a novel antenna system. It consists of a carbonyl carotenoid, salinixanthin, bound to a retinal protein that serves as a light-driven transmembrane proton pump similar to bacteriorhodopsin of archaea. Here we apply the femtosecond transient absorption technique to reveal the excited-state dynamics of salinixanthin both in solution and in xanthorhodopsin. The results not only disclose extremely fast energy transfer rates and pathways, they also reveal effects of the binding site on the excited-state properties of the carotenoid. We compared the excited-state dynamics of salinixanthin in xanthorhodopsin and in NaBH4-treated xanthorhodopsin. The NaBH4 treatment prevents energy transfer without perturbing the carotenoid binding site, and allows observation of changes in salinixanthin excited-state dynamics related to specific binding. The S1 lifetimes of salinixanthin in untreated and NaBH4-treated xanthorhodopsin were identical (3 ps), confirming the absence of the S1-mediated energy transfer. The kinetics of salinixanthin S2 decay probed in the near-infrared region demonstrated a change of the S2 lifetime from 66 fs in untreated xanthorhodopsin to 110 fs in the NaBH4-treated protein. This corresponds to a salinixanthin-retinal energy transfer time of 165 fs and an efficiency of 40%. In addition, binding of salinixanthin to xanthorhodopsin increases the population of the S state that decays in 6 ps predominantly to the ground state, but a small fraction (<10%) of the S state generates a triplet state.  相似文献   
9.
Salinixanthin, a C(40)-carotenoid acyl glycoside, serves as a light-harvesting antenna in the retinal-based proton pump xanthorhodopsin of Salinibacter ruber. In the crystallographic structure of this protein, the conjugated chain of salinixanthin is located at the protein-lipid boundary and interacts with residues of helices E and F. Its ring, with a 4-keto group, is rotated relative to the plane of the π-system of the carotenoid polyene chain and immobilized in a binding site near the β-ionone retinal ring. We show here that the carotenoid can be removed by oxidation with ammonium persulfate, with little effect on the other chromophore, retinal. The characteristic CD bands attributed to bound salinixanthin are now absent. The kinetics of the photocycle is only slightly perturbed, showing a 1.5-fold decrease in the overall turnover rate. The carotenoid-free protein can be reconstituted with salinixanthin extracted from the cell membrane of S. ruber. Reconstitution is accompanied by restoration of the characteristic vibronic structure of the absorption spectrum of the antenna carotenoid, its chirality, and the excited-state energy transfer to the retinal. Minor modification of salinixanthin, by reducing the carbonyl C=O double bond in the ring to a C-OH, suppresses its binding to the protein and eliminates the antenna function. This indicates that the presence of the 4-keto group is critical for carotenoid binding and efficient energy transfer.  相似文献   
10.
An increase in genetic variation in body size has often been observed under stress; an increase in dominance variance and interaction variance as well as in additive genetic variance has been reported. The increase in genetic variation must be caused by physiological mechanisms that are specific to adverse environments. A model is proposed to explain the occurrence of an increase in genetic variation in body size in Drosophila at extreme temperatures. The model has parameters specific to the low- and high-temperature regions of the viable range. Additive genetic variation in the boundary temperatures leads to a marked increase in additive genetic variation in development rate and body size at extreme temperatures. Additive genetic variation in the temperature sensitivity in the low- and high-temperature regions adds non-additive genetic variation. Development rate shows patterns in additive genetic variation that differ from the patterns of genetic variation in body size; therefore, the genetic correlation between development rate and body size changes sign repeatedly as a function of temperature. The existence of dominance in the genetic variation in the boundary temperatures or in the low- and high-temperature sensitivities leads to a higher total genetic variance due to higher dominance and interaction variance, for both development rate and body size. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号